K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình làm thế này đúng không ạ

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

13 tháng 5 2018

tham khảo ở đây : Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath

5 tháng 5 2024

Ê có lời giải ko mn 

24 tháng 4 2018

a) +Xét tg ABH và tg ACH có
AB=AC ( tg ABC cân tại A) 
góc B= góc C (tg ABC cân tại A)
góc AHB= góc AHC=900 (AH là đường cao )
Suy ra: tg ABH= tg ACH
b)+ tg ABH=tg ACH (câu a) => góc BAH= góc CAH (2 góc tương ứng) (1)
+ Ta có: DH // AC (GT)
=> góc CAH= góc DHA ( 2 góc so le trong ) (2)
+ Từ (1) và (2) => góc BAH= góc DHA hay góc DAH= góc DHA 
Suy ra: tg HDA cân tại D => AD=AH
c) +HD// AC => góc DHB= góc ACH ( 2 góc đồng vị ) hay góc DHB= góc ACB
Mà góc ABC= góc ACB (tg ABC cân tại A)
Suy ra: góc DHB= góc ACB => tg DBH cân tại D
=> DB=DH. Mặt khác: AD = DH (câu b)
Suy ra: DB=DA => CD là đường trung tuyến của tg ABC (3)
+ tg ABH= tg ACH (câu a )=> HB=HC (2 cạnh tương ứng ) => AH là đường trung tuyến của tg ABC (4)
+Từ (3) và (4) => G là trọng tâm của tg ABC (CD cắt AH tại G)
Mà BE là đường trung tuyến của tg ABC=> BE đi qua G
Suy ra: B, E, G thẳng hàng
d) mk bt lm nhưng lại k bt cách trình bày thông cảm nha ^^


 

26 tháng 4 2018

câu d tương đương với

CM cvi tam giác ABC > AH+3x 2/3 BE = AH+BE+CD

Tương đương với bài toán chưngs minh độ dài 3 đường trung tuyến của 1 tam giác nhỏ hơn chu vi của tam giác đó

bài toán đấy b có thể tham khảo quyển nâng cao pt tập 2 

7 tháng 6 2021

A) Trong TG cân, đường vuông góc xuất phát từ đỉnh cân đồng thời là đường trung tuyến, trung trực, phân giác

b) TG AMC = TG CME (g.c.g : AM= MC trung điểm; Góc AMB= góc CME đối đỉnh ; góc MCE = góc BAM so le trong)

c) I nằm trên trung điểm BC và trung điểm AC

D) 

Ta có: BM=ME ( TG AMC= TG CME)

=> BE = 2 BM 

 mà BI =2/3 BM ( I là trọng tâm)

=> BI= 1/3 BE

=> 3 BI = BE 

Xét TG AEB, ta có :

BE < AB+ AE ( Bất đẳng thức trong TG)

mà BE= 3 BI( cmt)

=> 3 BI< AB + AE

11 tháng 9 2018

Bạn tham khảo ở đường link dưới nhé:

Câu hỏi của Trần Ngọc Mai Anh - Toán lớp 7 - Học toán với OnlineMath