Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hai tam giác AHB và AHC ta có
AB = AC (gt)
\(\widehat{B}=\widehat{C}\)(gt)
BH = HC (gt)
Do đó: \(\Delta AHB=\Delta AHC\)(c-g-c)
b) Ta có: \(\Delta AHB=\Delta AHC\)(câu a)
=> \(\widehat{AHB}=\widehat{AHC}\)(cặp góc tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)(kề bù)
=> \(\widehat{AHB}=\widehat{AHC}=90^o\)
c) Ta có BH = HC (gt)
Mà BH + HC = BC
hay BH + HC = 10 (cm)
=> BH = HC = 5 (cm)
Áp dụng định lí Py-ta-go vào tam giác vuông ABH có
\(AB^2-BH^2=AH^2\)
\(13^2-5^2=AH^2\)
\(12^2=AH^2\)
=> AH = 12
P/s: k hộ thần =))))
A B H C 13 13 10
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) \(HB=HC=\frac{BC}{2}=\frac{10}{2}=5cm\)
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: \(AB^2=AH^2+BI^2\)
hay:\(13^2=AH^2+5^2\)
\(\Rightarrow AH^2=13^2-5^2\)
\(\Leftrightarrow AH=\sqrt{13^2-5^2}=12\)
Vậy AH=12cm
A B C H a)
theo giả thiết ta có :
AH là đường trung tuyến \(\Rightarrow BH=HC\)
xét \(\Delta AHB\) và \(\Delta AHC\) có:
\(AB=AC\) (gt)
\(AH\) chung
\(BH=HC\) ( cmt)
\(\Rightarrow\Delta AHB=\Delta AHC\) (c.c.c)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\) (2 góc tương ứng )
b)
ta có : \(\widehat{AHB}+\widehat{AHC}=180^0\) ( kề bù )
mà \(\widehat{AHB}=\widehat{AHC}\) (theo a)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
c) \(BH=HC=\frac{10}{2}=5\) (cm)
xét \(\Delta AHB\perp\) tại H
áp dụng định lý py-ta-go ta có:
\(AB^2=AH^2+BH^2\)
\(13^2=AH^2+5^2\)
\(\Rightarrow AH^2=169-25=144=\sqrt{144}=12\) (cm)
ban tu ve hinh nha
a) Xet tam giac ahb ca tam giac ahc co
ab=ac(tam giac abc can tai a)
ah chung
hb=hc(t\c duong trung tuyen trong tam giac)
\(\Rightarrow\)tam giac ahb=tam giac ahc(c-c-c)
b) vi tam giac ahb=tam giac ahc nen
goc ahb=ahc(2 goc t\u) ma 2 goc nay ke bu nen ahb=ahc=1\2.180=90 do
c) ap dung dinh ly pi ta go trong tam giac ahb(goc h=90 do) co
ah^2=ab^2-hb^2
ah^2=13^2-(10\2)^2
ah^2=13^2-5^2
ah^2=169-25
ah^2=144
ah=\(\sqrt{144}\)
ah=12
k dum mk nha
I A B C H E F
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △BAH và △CAH cùng vuông tại H
Có: AH là cạnh chung
AB = AC (cmt)
=> △BAH = △CAH (ch-cgv)
b, Vì △BAH = △CAH (cmt)
=> BH = CH (2 cạnh tương ứng)
mà BH + CH = BC
=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2 = 102 - 62 = 64
=> AH = 8 (cm)
c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)
Mà ∠HAC = ∠HAB (△CAH = △BAH)
=> ∠AHE = ∠HAB => ∠AHE = ∠HAE
=> △AHE cân tại E
d, Gọi { I } = EH ∩ BF
Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)
Mà ∠ABC = ∠ACB (cmt)
=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH
Mà EA = HE (△AHE cân tại E)
=> EA = BE
Xét △BAH có: E là trung điểm AB (EA = BE) => HE là đường trung tuyến
F là trung điểm AH => BF là đường trung tuyến
EH ∩ BF = { I }
=> I là trọng tâm của △BAH
\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)
Xét △BHI có: BI + HI > BH (bđt △)
\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)
\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)
\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)
Bài này mà không làm được hả trời.