Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D E K C
a. ta có \(\hept{\begin{cases}\widehat{A}\text{ chung}\\AB=AC\\AD=AE\end{cases}\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\Rightarrow}BE=CD\)
b. ta có \(\hept{\begin{cases}BD=CE\\\widehat{BKD}=\widehat{CKE}\text{ (đối đỉnh)}\\\widehat{KBE}=\widehat{KCD}\text{ (Do chứng minh ở câu a)}\end{cases}\Rightarrow\Delta KBD=\Delta KCE}\)
c. ta có \(\hept{\begin{cases}\widehat{ABK}=\widehat{ACK}\text{ (Do c/m ở câu a)}\\AB=AC\\KB=KC\text{ (Do c/m ở câu b)}\end{cases}\Rightarrow\Delta ABK=\Delta ACK\left(c.g.c\right)\Rightarrow}\)AK là phân giác
d. ta có KB=KC ( kết quả c/m của câu b) nên KBC cân tại K
Cho tam giác ABC cân tại A. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Gọi K là giao điểm của BE và CD. Chứng minh rằng:
a. BE = CD
b. Tam giác KBD bằng tam giác KCE
c. AK là phân giác của góc A
d. Tam giác KBC cân
a, Xét △ABE và △ACD
Có: AB = AC (△ABC cân tại A)
BAC là góc chung
AE = AD (gt)
=> △ABE = △ACD (c.g.c)
=> BE = CD (2 cạnh tương ứng)
b, Ta có: ADC + CDB = 180o (2 góc kề bù) và AEB + BEC = 180o (2 góc kề bù)
Mà AEB = ADC (△ABE = △ACD)
=> CDB = BEC
Lại có: AD + BD = AB và AE + EC = AC
Mà AD = AE (gt) và AB = AC (cmt)
=> BD = EC
Xét △KBD và △KCE
Có: KDC = KEC (cmt)
BD = EC (cmt)
DBK = ECK (△ABE = △ACD)
=> △KBD = △KCE (g.c.g)
c, Xét △ABK và △ACK
Có: AB = AC (gt)
BK = CK (△KBD = △KCE)
AK là cạnh chung
=> △ABK = △ACK (c.c.c)
=> BAK = CAK (2 góc tương ứng)
Mà AK nằm giữa AB, AC
=> AK là phân giác BAC
d, Xét △KBC có: KB = KC (cmt) => △KBC cân tại K
a)
Ta có AB = AC ( gt )
Mà AD = AE ( gt )
=> BD = EC
Xét tam giác BDC và tam giác CEB
Ta có : BD = EC ( cmt )
góc DBC = góc ECB ( tam giác ABC cân tạI A )
BC là cạnh chung
Nên tam giác BDC = tam giác CEB ( c-g-c )
=> BE = CD ( 2 cạnh tương ứng )
b)
Ta có : góc DCB = góc EBC ( tam giác BDC = tam giác CEB 0
Mà góc ECB = góc DBC ( tam giác ABC cân tại A )
=> góc ECK = góc DBK
Xét tam giác KBD và tam giác KCE
Ta có : góc DBK = góc ECK ( cmt )
DB = EC ( chứng minh ở đầu bài )
góc BDK = góc CEB ( tam giác BDC = tam giác CEB )
Nên tam giác KBD = tam giác KCE ( g-c-g )
c)
Xét tam giác ADK và tam giác EDK
Ta có : AD = AE ( GT )
DK = EK ( tam giác KBD = tam giác KCE )
AK là cạnh chung
Nên tam giác ADK = tam giác AEK ( c-c-c )
=> góc DAK = góc EAK
=> AK là p/g góc BAC
d)
Ta có KB = KC ( tam giác KBD = tam giác KCE )
=> Tam giác KBC cân tại K
A B C D E K H _ _
a) Ta có:
AB = AD + DB
AC = AE + EC
Mà AB = AC (gt) và AD = AE (gt)
=> DB = EC
Xét △DBC và △ECB có:
DB = EC (cmt)
DBC = ECB (△ABC cân)
BC: chung
=> △DBC = △ECB (c.g.c)
=> CD = BE (2 cạnh tương ứng)
b) Vì △DBC = △ECB => DCB = EBC (2 góc tương ứng)
=> △KBC cân
c) Xét △AKB và △AKC có:
AB = AC (gt)
AK: chung
KB = KC (△KBC cân)
=> △AKB = △AKC (c.c.c)
=> KAD = KAC (2 góc tương ứng)
=> AK là phân giác BAC
d) Xét △HAB và △HAC có:
AB = AC (gt)
HAB = HAC (AH: phân giác BAC)
AH: chhung
=> △HAB = △HAC (c.g.c)
=> AHB = AHC (2 góc tương ứng)
Ta có: AHB + AHC = 180o
=> AHB = AHC = 180o : 2 = 90o
Vì △HAB = △HAC => HB = HC = BC : 2 = 3
Xét △AHB vuông tại H có:
HA2 + HB2 = AB2 (định lí Pytago)
=> AH2 = AB2 - HB2
=> AH = 4 cm
Vậy AH = 4cm
a: Xét ΔAEB và ΔADC có
AE=AD
\(\widehat{BAE}\) chung
AB=AC
Do đó; ΔAEB=ΔADC
=>EB=DC
b: Ta có: ΔAEB=ΔADC
=>\(\widehat{ABE}=\widehat{ACD}\)
Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
=>\(\widehat{BDC}=\widehat{CEB}\)
Xét ΔKDB và ΔKEC có
\(\widehat{KDB}=\widehat{KEC}\)
DB=EC
\(\widehat{KBD}=\widehat{KCE}\)
Do đó: ΔKDB=ΔKEC
c: Ta có: ΔKDB=ΔKEC
=>KB=KC
Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
Do đó: ΔABK=ΔACK
=>\(\widehat{BAK}=\widehat{CAK}\)
=>AK là phân giác của góc BAC
d: Ta có: ΔABC cân tại A
mà AK là đường phân giác
nên AK là đường cao
=>AK\(\perp\)BC
e: Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC