Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABC cân tại A và DB = DC (gt) nên đường trung tuyến AD cũng là đường phân giác của ∠(BAC) (tính chất).
Ta có: DE ⊥ AB (gt)
DF ⊥ AC (gt)
Suy ra: DE = DF (tính chất đường phân giác của góc).
Vì ΔABC cân tại A và DB DC (gt) nên đường trung tuyến AD cũng là đường phân giác của (BAC).
Ta có: DE ⊥ AB (gt)
DF ⊥ AC (gt)
Suy ra: DE = DF (tính chất đường phân giác của góc)
(ĐPCM)
b) Ta có: BM=CM(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(ΔACB cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)
a. xét tam giác vuông ADE và tam giác vuông ADF,có :
AB = AC ( ABC cân )
Góc EAD = góc FAD ( gt )
AD : cạnh chung
Vậy tam giác vuông ADE = tam giác vuông ADF ( c.g.c )
=> DE = DF ( 2 cạnh tương ứng )
b. xét tam giác vuông BDE và tam giác vuông CDF, có:
góc B = góc C ( ABC cân )
BD = CD ( AD là đường phân giác cũng là đường trung tuyến trong tam giác cân ABC )
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền. góc nhọn)
c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực của BC
a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)
Do đó: ΔAED=ΔAFD
SUy ra: DE=DF
b: Xét ΔBDE vuông tại E và ΔCDF vuông tại F có
BD=CD
DE=DF
Do đó: ΔBDE=ΔCDF
c: Ta có: ΔABC cân tại A
mà AD là phân giác
nên AD là đường trung trực của BC
A B C D E F
Xét tam giác BED và tam giác CFD có:
\(\widehat{BED}=\widehat{CFD}\left(=90^o\right)\)
\(BD=DC\)
\(\widehat{EBD}=\widehat{FCD}\)(tam giác ABC cân)
=>tam giác BED= tam giác CFD (ch-gn)
=> DE=DF