Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
Xét tam giác BED và tam giác CFD có:
\(\widehat{BED}=\widehat{CFD}\left(=90^o\right)\)
\(BD=DC\)
\(\widehat{EBD}=\widehat{FCD}\)(tam giác ABC cân)
=>tam giác BED= tam giác CFD (ch-gn)
=> DE=DF
Vì ΔABC cân tại A và DB = DC (gt) nên đường trung tuyến AD cũng là đường phân giác của ∠(BAC) (tính chất).
Ta có: DE ⊥ AB (gt)
DF ⊥ AC (gt)
Suy ra: DE = DF (tính chất đường phân giác của góc).
Vì ΔABC cân tại A và DB DC (gt) nên đường trung tuyến AD cũng là đường phân giác của (BAC).
Ta có: DE ⊥ AB (gt)
DF ⊥ AC (gt)
Suy ra: DE = DF (tính chất đường phân giác của góc)
(ĐPCM)
b) Ta có: BM=CM(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(ΔACB cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC