Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta EAF\) có :
AE = AF => \(\Delta EAF\) là tam giác cân
E = F = (180 - 80 ) : 2 = 50
=> E = F = 50
Xét \(\Delta ABC\) có :
B = C = (180 - 80 ) : 2 = 50
=> B = C = 50
=> E = B (=50)
=> EF // BC
Câu còn lại bạn tự làm nha
ý còn lại nè
\(\Delta ABC\) cân A nên AB=AC(1)
AE=AF(2)
E thuộc AB , F thuộc AC (3)
Từ (1)(2)(3)=> AB-AE=AC-AF
hay BF = CE
Ta có hình vẽ :
A B C M N
Ta có:
\(\Delta ABC\) cân tại A
=> \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-100^0}{2}=40^0\) ( hai góc đáy của tam giác cân ) (1)
Theo bài ra ta lại có:
AM=AN
=> \(\Delta AMN\) cân tại A ( trong tam giác có 2 góc bằng nhau )
\(\Rightarrow\widehat{AMN}=A\widehat{NM}=\dfrac{180^0-\widehat{A}}{2}=40^0\) ( hai góc đáy của tam giác cân) (2)
Từ (1) và (2) suy ra:\(\widehat{B}=\widehat{AMN}\)
=> MN//BC ( vì có cặp góc đồng vị )
(đ.p.c.m)
∆ABD và ∆ACE có:
AB=AC(gt)
ˆA góc chung.
AD=AE(gt)
Nên ∆ABD=∆ACE(c.g.c)
Suy ra: ˆABD=ˆACE.
Tức là ˆB1 =ˆC1
b) Ta có ˆB=ˆC mà ˆB1=ˆC1 suy ra ˆB2=ˆC2
Vậy ∆IBC cân tại I
A E B M D C 1 1 2 2 1 2
a, Ta có \(\Delta ABC\)cân tại A
=>AB=AC
+)Xét \(\Delta ABD\)và \(\Delta ACE\) có
AB=AC (cmt)
\(\widehat{BAC}\): chung
AD=AE (gt)
=> \(\Delta ABD\)= \(\Delta ACE\) (c-g-c)
=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc t/ứ)
b, Ta có \(\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\\\widehat{ABD}=\widehat{ACE}\left(cmt\right)\end{cases}}\)(t/c t/g cân)
=> \(\widehat{B_2}=\widehat{C_2}\)
Xét \(\Delta IBC\)có \(\widehat{B_2}=\widehat{C_2}\)=> \(\Delta IBC\)cân tại I
Xin lỗi nhé mình chưa nghĩ ra câu b và câu c
Cần hình ko?
có bạn