\(\widehat{A}=36^o\), BC=1cm. Kẻ phân giác CD. Gọi H...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

Vì BC có độ dài lớn nhất nên đề bài tương đương với: \(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}=\sqrt[3]{BC^2}\)(Định lí Pythagoras đảo)

Lập phương 2 vế: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)

Ôn lại các hệ thức lượng cho tam giác vuông vì sắp tới mình sẽ dùng 1 chuỗi hệ thức đấy:

+Tam giác AHD vuông tại H, đường cao DH: \(AH^2=AD.AB,BH^2=BD.BA\)

+Tam giác AHC vuông tại H, đường cao EH: \(AH^2=AC.AE,CH^2=CA.CE\)

+Tam giác ABC vuông tại A, đường cao AH: \(AH^2=HB.HC,AH.BC=AB.AC,BC^2=AB^2+AC^2\)

$ ADHE là hình chữ nhật nên AD=HE

$ Tam giác AHE vuông tại H nên \(AH^2=AE^2+HE^2\)

Ok, giờ triển thoi: \(BD^2+EC^2+3\sqrt[3]{\left(BD.EC\right)^2}\left(\sqrt[3]{BD^2}+\sqrt[3]{EC^2}\right)=BC^2\)

\(\Leftrightarrow\left(AB-AD\right)^2+\left(AC-AE\right)^2+3\sqrt[3]{\left(BD.CE\right)^2}.\sqrt[3]{BC^2}=BC^2\)

\(\Leftrightarrow\left(AB^2+AC^2\right)+\left(AD^2+AE^2\right)-2\left(AB.AD+AC.AE\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)

\(\Leftrightarrow BC^2+\left(AE^2+HE^2\right)-2\left(AH^2+AH^2\right)+3\sqrt[3]{\left(BD.CE.BC\right)^2}=BC^2\)

\(\Leftrightarrow AH^2-4AH^2-3\sqrt[3]{\left(BD.CE.BC\right)^2}=0\)

\(\Leftrightarrow3\sqrt[3]{\left(BD.CE.BC\right)^2}=3AH^2\)

\(\Leftrightarrow BD.CE.BC=AH^3\)

\(\Leftrightarrow BD.CE.BC.AH=AH^4\)

\(\Leftrightarrow\left(BD.BA\right)\left(CE.CA\right)=AH^4\)

\(\Leftrightarrow BH^2.CH^2=AH^4\Leftrightarrow BH.CH=AH^2\)---> Luôn đúng

Vậy giả thiết đúng.

(Bài dài giải mệt vler !!)

31 tháng 7 2020

kẻ đường cao AH ta có \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

AD và AE là hai tia phân giác cả hai góc kề bù => AD _|_ AE

AH là đường cao của tam giác vuông ADE ta có

\(\frac{1}{AH^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)

vậy \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AD^2}+\frac{1}{AE^2}\)

10 tháng 7 2018

(hình xấu thông cảm)

B A C H D E

Áp dụng hệ thức lượng vào \(\Delta AHB\)ta có:

           \(AD.AB=AH^2\)

Áp dụng hệ thức lượng vào \(\Delta AHC\)ta có:

         \(AE.AC=AH^2\)

suy ra:  \(AD.AB=AE.AC\)

10 tháng 7 2018

A B C H D E

Ta có: Áp dụng hệ thức lượng trong tam giác vuông:

+) Xét △AHC có góc AHC bằng 90o, ta được: AH2 = AE.AC (1)

+) Xét △AHB có góc AHB bằng 90o, ta được: AH2 = AD.AB (2)

Từ (1) và (2), ta được: AD.AB = AE.AC( = AH2)