Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét ΔECB và ΔDBC, ta có :
EC = BD (gt)
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
BC là cạnh chung
=> ΔECB = ΔDBC (c.g.c)
=> \(\widehat{GBC}=\widehat{GCB}\) (2 góc tương ứng)
vì ΔGBC có \(\widehat{GBC}=\widehat{GCB}\) nên ⇒ ΔGBC là một tam giác cân (cân tại G)
a) BE = DC, ΔBEC = ΔCDB.
Vì ΔABC cân tại A nên: AB = AC.
Ta lại có: AB = AE + EB mà AE = EB (gt)
AC = AD + DC mà AD = DC (gt)
⇒ AE = EB = AD = DC
Vậy BE = DC.
Xét ΔBEC và ΔCDB có:
BE = CD (cmt)
∠ABC = ∠ACB (ΔABC cân)
BC : cạnh chung.
Do đó: ΔBEC = ΔCDB (c.g.c)
b) ΔBGC cân.
Vì ΔBEC = ΔCDB (câu a)
⇒ ∠ECB = ∠DBC (hai góc tương ứng)
⇒ ΔBGC cân tại G.
Câu c và hình chờ xíu :v
c) BC <4GD
Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2)
AG cắt BC tại H (HB = HC)
Xét ΔABH và ΔACH có:
AB = AC (gt)
BH = HC (cmt)
AH : chung
Do đó: ΔABH = ΔACH (c.c.c)
⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o
⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.
Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD
⇒ 4GD = DB + GC.
Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)
Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)
Từ (1) và (2) suy ra: BG + CG > BH + CH
Mà GB + CG = 4GD (cmt) và CB = BH + CH
⇒ 4GD > BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BD=CE
BC chung
Do đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Xét ΔABC có
AE/AB=AD/AC
Do đó: DE//BC
a)Xét tam giác ABD và tam giác ACE,ta có:
A là góc chung
AB=AC(ví tam giác ABC cân tại A)
AE=AD(gt)
=> tam giác ABD=tam giác ACE(c.g.c)=>BD=CE( 2 cạnh tương ứng)
b)Vì BD,CE lần lượt là đường trung tuyến mà lại giao nhau tại G(mà BD=CE)=>GE=GD=1/3 BD=1/3 CE
=>EG=GD
Xét tam giác AEG và tam giác ADG ,ta có:
GE=GD(c/m trên)
AE=AD(gt)
AG cạnh chung
=>tam giác AEG=tam giác ADG(c.c.c)
=>góc EAG=góc DAG=>AG là tia p/g góc A
c)Ta có: Vì K là trung điểm AG;I là trung điểm GC và AD=DC
=>AI;CK:GD lần lượt là đường trung tuyến tam giác AGC=>BD;CK;AI đồng quy(t/c 3 đường trung tuyến của tam giác)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BC chung
BD=CE(ΔABD=ΔACE)
Do đó: ΔBDC=ΔCEB(cạnh huyền-cạnh góc vuông)
tu ve hinh :
AH cat BC tai O
xet tamgiac HAB va tamgiac HAC co :
BH = CH do tamgiac HBC can tai H (gt)
BA = CA do tamgiac ABD = tamgiac ACE (gt)
AH chung
nen tamgiac HAB = tamgiac HAC (c - c - c)
=> goc BAH = goc CAH (dn) (1)
goc DAB = goc EAC (dd) (2)
goc DAB + goc DAH = goc BAH (3)
goc CAE + goc EAH = goc EAC (4)
(1)(2)(3)(4) => goc DAH = goc HAE (5)
xet tamgiac DHA va tamgiac EHA co : goc HDA = goc HEA do CD | BH va BE | CH (gt) (6)
AH chung (7)
(5)(6)(7) => tamgiac DHA = tamgiac EHA (ch - gn)
=> goc OHB = goc OHC (dn) (8)
tamgiac HBC can tai H => BH = HC va goc HBO = goc HCO (9)
(8)(9) => tamgiac HBO = tamgiac HCO (g - c - g)
=> goc HOB = goc HOC (dn) va OB = OC (dn)
goc HOB + goc HOC = 180 do (kb)
=> HOC = 90 do => AH | BC (dn)
=> AH la trung truc cua BC
Xét ΔABD và ΔACE có
AB=AC
góc BAD chung
AD=AE
=>ΔABD=ΔACE
Sửa đề: ΔGBC cân tại G
Xét ΔEBC và ΔDCB có
EB=DC
góc EBC=góc DCB
BC chung
=>ΔEBC=ΔDCB
=>góc GBC=góc GCB
=>ΔGBC cân tại G