Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy nhớ lại kiến thức lớp 7: Trong 1 tam giác, 3 đường phân giác cắt nhau tại 1 điểm và điểm đó cách đều 3 cạnh của tam giác (điểm này gọi là tâm đường tròn nộ tiếp). Nối E -> F; E -> D ; D -> F. Ta sẽ chứng minh H là giao điểm 3 đường phân giác.
Ta chứng minh được ∆AFC ~ ∆AEB(g.g)
=> AF/AE = AC/AB
=> AF/AC = AE/AB.
=> ta chứng minh được ∆AEF ~ ∆ABC(c.g.c)
=> góc AEF = góc ABC, chứng minh tương tư ta được ∆CED ~ ∆CBA
=> góc CED = góc ABC
=> góc AEF = góc CED ( = góc ABC), ta có: góc FEB = 90º - góc AEF và góc BED = 90º - góc CED, mà góc AEF = góc CED
=> góc FEB = góc BED
=> BE là phân giác góc FED
=> EH là phân giác góc FED, chứng minh tương tự ta được DH là phân giác góc EDF và FH là phân giác góc EFD
hình tự vẽ
a)\(\Delta ABE=\Delta ACF\)(ch-gn) do: \(\widehat{AEB}=\widehat{AFC}=90^o\);\(\widehat{BAC}\) chung;AB=AC(do \(\Delta ABC\)cân tại A)
=>AE=AF(2 cạnh tương ứng)
b) AE=AF=>\(\Delta EAF\) cân tại A=>\(\widehat{AFE}=\widehat{AEF}=\frac{180^o-\widehat{EAF}}{2}\)(1)
tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AFE}=\widehat{AEF}=\)\(\widehat{ABC}=\widehat{ACB}\)
trong đó \(\widehat{AFE}\) đồng vị với \(\widehat{ABC}\) và \(\widehat{AEF}\)đồng vị với \(\widehat{ACB}\)
=> EF//BC => BCEF là hình thang
hình thang BCEF có: \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{FBC}=\widehat{ECB}\) => hình thang BCEF cân
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC và AE*AC=AB*AF
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
b) ta có: AE/AF = AB/AC ( câu a )
=) AE×AC/AF= AB (1)
Xét tam giác ADB và tam giác CFB có:
Góc ADB= góc CFB
Chung góc ABC
=) Tam giác ADB đồng dạng với tam giác CFB (g-g)
=) BD/AF= AB/AC
(=) BD×BC/BF= AB (2)
Từ (1) và (2) =) cái đề ( đpcm )
hình chữ nhật có diện tích 36 cm2, chiều rộng là 3 cm.Hỏi hình chữ nhât đó có chiều dai gấp mấy lần chiều rộng?
A B C F E
Kẻ EF // BC
Xét \(\Delta AEF\)có:
Góc C = Góc E
Góc F = Góc B ( EF // BC; 2 góc đồng vị)
\(\Rightarrow\Delta AEF\)cân tại A.
nên AE = AF
Xét \(\Delta ACF\)và \(\Delta ABE\)
Góc A chung (gt)
AC = AB (gt)
\(\Rightarrow\Delta ACF=\Delta ABE\)(cạnh huyền- góc nhọn)
\(\Rightarrow AF=AE\)