Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có góc DFC=DBC(2 góc đồng vị) Mà DFC = FCB (DF// BC ; 2 góc so le trong) =>DBC=FCB .Mà ABC=ACB( tg ABC cân) =>FBD=DCF Xét 2 tg AFC;tg ADB Góc A chung AC=AB FBD =DCF(cmt) =>tg AFC= tg ADB(g-c-g)
Câu a (1,0đ) Chứng minh :ABD = ACE
Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt) (0,25đ) x3=(0,75đ)
Vậy ABD = ACE(cgc) (0,25đ)
Câu b (0,75đ) Chứng minh đúng vuông AMD = vuông ANE vì có AD = AE;
(do ABD =ACE) (0,5đ)
Kết luận AMD = ANE và suy ra AM =AN) (0,25đ)
Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE (cạnh huyền - góc nhọn )(0,25đ)
Lập luận chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)
Từ lập luận để (2)
Kết hợp (1)và (2) KDE đều )(0,25đ)
Câu a (1,0đ) Chứng minh :ABD = ACE
Xét ABD và ACE :có AB=AC (cạnh bên cân); =(góc đáycân);BD=CE (gt) (0,25đ) x3=(0,75đ)
Vậy ABD = ACE(cgc) (0,25đ)
Câu b (0,75đ) Chứng minh đúng vuông AMD = vuông ANE vì có AD = AE;
(do ABD =ACE) (0,5đ)
Kết luận AMD = ANE và suy ra AM =AN) (0,25đ)
Câu c (0,75đ): Chứng minh đúng vuông BMD = vuông CNE (cạnh huyền - góc nhọn )(0,25đ)
Lập luận chứng minh được rồi suy ra KDE cân tại K (1)(0,25đ)
Từ lập luận để (2)
Kết hợp (1)và (2) KDE đều )(0,25đ)
hình tự vẽ nha
chứng minh
DF // BC nên ta có:
AF/AB = AD/AC
mà AB =AC
=> AF = AD
hiển nhiên AC = AB
góc A chung
=> tgiác AFC = tgiác ADB (c.g.c)
b/ ODF là tgiác đều?
Có BCDF là hình thang cân, có O là giao của hai đường chéo nên:
OD = OF => tgiác ODF cân.
ta lại có: góc FDO = góc DBC = 60° (so le trong)
=> tgiác cân ODF có 1 góc bằng 60° nên là tgiác đều.
c/ tgiác cân ABC có A = 20°
=> B = C = (180° - 20°)/2 = 80°
ta dể cm OBC là tgiác đều (OB = OC, góc OBC = 60°)
=> BO = BC (1)
Ta lại có:
gócBEC = 180° - gócEBC - gócBCE = 180° - 80° - 50° = 50° = gócBCE
=> tgiác BCE cân tại B
=> BE = BC mà (1): BO = BC
=> BE = BO
=> tgiácBEO cân tại B
có góc EBO = 80° - 60° = 20°
=> gócEOB = (180° - 20)/2 = 80°
d/ tgiác EFD = tgiác EOD ?
Có: gócEOC = gócEOB + gócBOC = 80° + 60° = 140°
góc BFC = 180° - 80° - 60° = 40° = góc EFO
gócFEO + gócEFO = gócEOC (góc ngoài)
=>gócFEO = 140° - 40° = 100°
=> gócFOE = 180° - gócEFO - gócFEO = 180° - 40° - 100° = 40° = gócEFO
=>tgiác EFO cân tại E
=> EF = EI (a)
có góc EFD = 180° - 80° = 100°
góc EOD = 180° - 80° = 100°
=> góc EFD = góc EOD (b)
mà FD = ID (c) (do ODF là tgiác đều)
từ (a),(b),(c)=> tgiác EFD = tgiácEOD (c.g.c)
thánh này coby trên yahoo hỏi và đép nè