K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 giờ trước (22:54)

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\hat{EBC}=\hat{DCB}\) (ΔABC cân tại A)

Do đó: ΔEBC=ΔDCB

b: ΔEBC=ΔDCB

=>\(\hat{ECB}=\hat{DBC}\)

=>\(\hat{KBC}=\hat{KCB}\)

=>ΔKBC cân tại K

=>KB=KC

Ta có; ΔEBC=ΔDCB

=>EB=DC và EC=DB

ta có: EC=EK+CK

DB=DK+BK

mà EC=DB và KB=KC

nên KE=KD

Xét ΔKEB vuông tại E và ΔKDC vuông tại D có

KE=KD

KB=KC

Do đó: ΔKEB=ΔKDC

c: Xét ΔAKB và ΔAKC có

AK chung

KB=KC

AB=AC

Do đó: ΔAKB=ΔAKC

=>\(\hat{BAK}=\hat{CAK}\)

=>AK là phân giác của góc BAC

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

b: Xét ΔKEB vuông tại E và ΔKDC vuông tại D có

EB=DC

góc KBE=góc KCD

=>ΔKEB=ΔKDC

c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có

AK chung

KE=KD

=>ΔAEK=ΔADK

=>góc EAK=góc DAK

=>AK là phân giác của góc BAC

d: ΔABC cân tại A có AK là phân giác

nên AK là trung trực của BC

=>A,K,I thẳng hàng

a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng vói ΔBCA

b: Xét ΔBAD và ΔBHI có

góc BAD=góc BHI

góc ABD=góc HBI

=>ΔBAD đồng dạng vói ΔBHI

=>BA/BH=BD/BI

=>BA*BI=BH*BD

25 tháng 4 2023

cứu mik phần c với ạ

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: ΔABD=ΔACE

=>góc ABD=góc ACE

=>góc HBC=góc HCB

=>ΔHBC cân tại H

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

=>ΔDAF=ΔDEC

=>DF=DC

=>ΔDFC cân tại D

c: Xét ΔBFC có

FE,CAlà đường cao

FE cắt CA tại D

=>D là trực tâm

=>BD vuông góc CF tại H

=>DH vuông góc CF tại H

mà ΔDFC cân tại D

nên H là trung điểm của FC

Xét ΔKFC có

CD là trung tuyến

CI=2/3CD

Do đó: I là trọng tâm

mà H là trung điểm của CF

nên K,I,H thẳng hàng