K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

A B C H

Do \(\widehat{BAC}\) là góc nhọn nên \(\widehat{BAC}< 90^o\)

Xét tam giác cân ABC có AH là đường cao đồng thời phân giác.

Vậy thì \(\widehat{BAH}=\widehat{CAH}=\frac{\widehat{BAC}}{2}\Rightarrow\widehat{BAH}=\widehat{CAH}< 45^o\)

Xét tam giác vuông ABH có \(\widehat{BAH}< 45^o\Rightarrow\widehat{ABH}>45^o\Rightarrow\widehat{ABH}>\widehat{BAH}\Rightarrow AH>BH\)

Tương tự AH > CH

Cộng vế với vế ta có : 2AH > BH + CH hay 2AH > BC.

5 tháng 1 2018

Bài này cũng gần giống bài banj tìm nè:

 - Kẻ đường cao AK. 
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2 
- Xét ΔAKC và ΔBHC có : 
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC) 
Góc C chung 
Vậy ΔAKC đồng dạng với ΔBHC (g.g.) 
⇨ AC/BC = KC/HC 
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt) 
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ) 
⇔ 1/HC = 2AB/BC² 
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế) 
⇔ AC/HC = 2(AB/BC)² (AB = AC) 
⇔ (AH + HC)/HC = 2(AB/BC)² 
⇔ AH/HC + 1 = 2(AB/BC)² 
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh) 

Chúc bạn học tốt !

23 tháng 3 2016

1.

Ta có : AC<AD (vì : D là tia đối của tia BC )

=> HD<HC

3. 

Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)

Mà : 1/2AH<AB+AC

=> AB+AC>2AH

4.

Ta có : ko hiu

23 tháng 3 2016

bạn giải bài 3 mik hk hiu, bn viết rõ rak dc hk

21 tháng 7 2020

a) chứng minh tam giác ABI = tam giác BEC

23 tháng 7 2020

a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)

Xét \(\Delta\)ABI và \(\Delta\)BEC có :

AI = BC(gt)

\(\widehat{IAB}=\widehat{EBC}\)(cmt)

AB = BE(tam giác ABE vuông cân tại B)

=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)

b) \(\Delta\)ABI  = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)

\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)

Gọi giao điểm của CE với AB là M

Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)

Do đó \(CE\perp BI\)

Gọi giao điểm của BF và AC là N

Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)

=> BF vuông góc với CI

c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy

–12 –12 –12 –10 –10 –10 –8 –8 –8 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 0 0 0 A A A B B B C C C I I I H H H E E E F F F M M M

A B C F E H

a, Xét \(\Delta AEB\)và \(\Delta AFC\)có :

\(+,\widehat{A}\)chung

\(+,AB=AC\)\(\Delta ABC\)cân tại A )

\(+,\widehat{ABE}=\widehat{ACE}\left(\widehat{AEB}=\widehat{AFC}=90^0\right)\)

\(\Rightarrow\Delta AEB=\Delta AFC\)

b, \(\Delta AEB=\Delta AFC\left(cmt\right)\)

\(\Rightarrow AF=AE\)

Xét \(\Delta AEH\)và \(\Delta AFH\)có :

\(+,\widehat{AFH}=\widehat{AEH}=90^0\)

\(+,AF=AE\)                        \(\hept{\begin{cases}\\\Rightarrow\Delta AFH=\Delta\\\end{cases}AEH\left(c.c.c\right)}\)

\(+,AH\)chung

\(\Rightarrow\widehat{FAH}=\widehat{AEH}\)

\(\Rightarrow\)AH là tia phân giác của của góc \(\widehat{A}\)

Mặt khác \(\Delta ABC\)cân tại A

\(\Rightarrow AH\perp BC\)

c, Tự làm nhé ..

25 tháng 4 2016

a) Ta có: BA = BD (Gt)

=> Tam giác BAD cân tại B

=> góc BAD = góc BDA (đpcm)

b) Ta có: góc HAD + góc HDA = 90(tam giác ADH vuông tại H)

              góc DAC + góc DAB = 900 (tam giác ABC vuông tại A)

Mà góc HDA = góc DAB (cm a)

=> 900 - HDA = 90- DAB

hay góc HAD = góc DAC    (1)

Mà AD nằm giữa AH và AC    (2)

Từ (1) và (2):

=> AD là phân giác của góc HAC (đpcm)

c) Xét tam giác AHD và tam giác AKD có:

                    góc H   =  góc K (=900)

                       AD    =   AD (cạnh chung)

                  góc HAD = góc DAC ( cm b)

    Vậy tam giác AHD = tam giác AKD (ch-gn) (đpcm)

                       => AH = AK (cạnh tương ứng) (đpcm)

d) Đang nghĩ

25 tháng 4 2016

d) Xét tam giác DKC có: góc K = 900

=> Cạnh DC lớn nhất

==> KC + AK + BD < DC + BD + AK (vì KC < DC)

==> AC + BD < BC + AK ( do KC + AK = AC; DC + BD = BC)

Mà: AB = BD (Gt)

      AK = AH (cm c)

=> AC + AB < BC + AH 

Mà BC + AH < BC + 2AH

==> AB + AC < BC + 2AH (đpcm)

17 tháng 3 2016

a. xét tam giác ABE và tam giác ACD co:AB=AD; góc BAE=gocDAC; AE=AC suy ra tam giác ABE=tam giác ADC(c.g.c);suy ra: BE=DC;gocABE=góc ACD. đặt giao điểm của DC và AB làO;BE và DC là K ta có:

góc ADO+góc DOA+góc OAM=180

góc OBK+gócBOK+gócOKB=180

mà: góc ADO=góc OBA;DOA=BOK suy ra:OAM=OKB;MÀ OAM=90=>OKB=90=>BEvuông góc với DC