\(AH\perp CD\left(H\in BC\right);BK\perp AC\left(K\in AC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Xét tam giác BAH

  Có B+BAH=900(vì tam giác BAH vuông tại H)

        500+BAH=900

       =>BAH=900-500

       =>BAH=400

Xét tam giác HAC

   Có C+HAC=900(Tam giác HAC vuông tại H)

         400+HAC= 900

         HAC=900-400

         HAC=500

B)Xét tam giác ABH

     Có AB2 = HB2+AH2(Theo định lý Pi-ta-go)

           AB2=32+42     

           AB2=25=52

           AB=5

     Xét tam giác CAH

        Có AC2=AH2+HC2 (Theo định lý Pi-ta-go)

                     AC2=42+42=32=       

14 tháng 1 2018

a ) Do \(AH\perp BC\Rightarrow\)AH là đường cao của \(\Delta ABC\) cân tại A .Hay AH cũng là đường trung tuyến của \(\Delta ABC\) cân tại A .

\(\Rightarrow BH=HC\)

Xét \(\Delta BMH\) và \(\Delta CNH\) có : \(\widehat{BMH}=\widehat{CNH}=90^0\left(gt\right);BH=HC\left(cmt\right);\widehat{B}=\widehat{C}\left(gt\right)\)

\(\Rightarrow\) \(\Delta BMH\) = \(\Delta CNH\) (CH - GN) => BM = CN

Kết hợp với AB = AC => AM = AN hay \(\Delta AMN\) Cân tại A

b)  \(\Delta AMN\) Cân tại A (cmt) \(\Rightarrow\widehat{BAC}=\frac{180^0-\widehat{AMN}}{2}\)(1)

\(\Delta ABC\) Cân tại A (gt)  \(\Rightarrow\widehat{BAC}=\frac{180^0-\widehat{ABC}}{2}\)(2)

Từ (1);(2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}\) Lại ở vị trí trong cùng phía \(\Rightarrow MN\\ \)BC

c) Áp dụng định lý Pytagore và 2 tam giác vuông\(BMH\) Và \(ANH\) ta có :

\(AH^2=AN^2+HN^2\)

\(BH^2=BM^2+MH^2\Rightarrow BM^2=BH^2-MH^2\)

\(\Rightarrow AH^2+BM^2=AN^2+HN^2+BH^2-MH^2=\left(AN^2+BH^2\right)+\left(HN^2-MH^2\right)\)

\(=AN^2+BH^2\)(đpcm)

14 tháng 1 2018

Tam giác(TG) ABC cân tại A có đường cao AH => AH đồng thời là trung tuyến => BH=HC

TG ABC cân => Góc ABC = góc ACB (2goc đáy)

TG MBH = TG NCH (cạnh huyền-góc nhọn) => MB = NC (2ctu) 

mà AB = AC (vì TG ABC cân) và AM + BM = AB , AN + NC = AC 

=> AM = AN 

=> TG AMN cân

b)  AM = BM (CMT) và AN = NC (CMT) => MN là ddg TB của TG=> MN//BC

21 tháng 3 2022

undefinedundefinedundefined

21 tháng 3 2022

undefinedundefinedundefined

5 tháng 2 2018

làm j có tam giác nào cân tại A ( A<90o)

6 tháng 2 2018

a) Xét tam giác vuông ABH và tam giác vuông ACH có:

Cạnh AH chung

AB = AC (gt)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)  (Hai góc tương ứng)

Vậy nên AH là tia phân giác góc BAC.

b) Xét hai tam giác vuông AEH và AFH có:

Cạnh AH chung

\(\widehat{EAH}=\widehat{FAH}\)

\(\Rightarrow\Delta AEH=\Delta AFH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow HE=HF\)  (Hai cạnh tương ứng)

Suy ra tam giác HEF cân tại E.

c) Dễ thấy \(\Delta ABK=\Delta ACK\left(c-g-c\right)\)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}\)

Lại có \(\widehat{AKC}=\widehat{AHF}\)   (Đồng vị) 

\(\widehat{AHF}=\widehat{AHE}\) (Do \(\Delta AEH=\Delta AFH\) )

\(\Rightarrow\widehat{AKB}=\widehat{AHE}\) hay HE // BK

d) Ta có \(\Delta AHN=\Delta AHM\left(c-g-c\right)\)

\(\Rightarrow\widehat{MAH}=\widehat{NAH}=90^o\)

\(\Rightarrow\widehat{MAN}=180^o\) hay M, N, A thẳng hàng.