Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác AME vuông tại E và tam giác AMF vuông tại F có:
\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của \(\widehat{BAC}\))
AM:chung
Suy ra \(\Delta AME=\Delta AMF\)(cạnh huyền- góc nhọn)(1)
=> ME=MF(2 cạnh tương ứng)
Suy ra MEF cân.
b)Theo đề bài: tam giác ABC có M là trung điểm BC và AM là phân giác góc BAC. Suy ra AM vừa là đường trung tuyến vừa là đường phân giác của tam giác ABC và tam giác ABC là tam giác cân.(2)
c)Từ (2)suy ra AM là đường cao của tam giác cân ABC và \(AM\perp BC\)(3)
Từ (1) ta cũng suy ra AE=AF (2 cạnh tương ứng) và AEF là tam giác cân. Xét:
\(\widehat{AEF}=\widehat{AFE=}\frac{180^o-\widehat{A}}{2}\left(4\right)\)
\(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\left(5\right)\)(ABC là tam giác cân(cmt))
Từ (4) và (5), suy ra các cạnh trên bằng nhau. Mà chúng lại ở vị trí so le trong nên EF//BC(6)
Từ (3) và (6), suy ra \(AM\perp EF\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a . Xét tam giác ABD và tam giác ACE , có :
BD = CE ( gt)
AB = AC ( gt ) ( b.sung thêm đi bn )
Góc B = Góc C ( 2 góc ở đáy của tam giác cân )
Do đó ,Tam giác ABD = Tam giác ACE ( cgc)
=> AD = AE ( 2 cạnh t.ứng )
b , Xét t.giác vuông AMD = t.giác vuông ANE , có :
AD = AE ( cm a)
Góc MAD = Góc NAE ( vì t.giác ABD = t.giác ACE )
Do đó , T.giác vg AMD = t.giác vg ANE ( chgn )
=> AM = AN ( 2 cạnh t.ứng )
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét tam giác ABM và tam giác ACM có
AB=AC(gt)
BM=CM(gt)
^ABC=^ACB(gt)
=> tam giác ABM= tam giác ACM(c-g-c)
=> ^AMB=^AMC(2 g tương ứng)
=> ^AMB=^AMC=180 độ /2 =90 độ
hay AM vuông góc vs BC
b, Ta có: BM=MC=1/2 BC=5
Áp dụng đly pitago vào tam giác vuông ABM có:
AM^2=AB^2-BM^2=13^2-5^2=144
=> AM=12
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
BM=MC=12BC(gt)BM=MC=12BC(gt)
⇒AC2=4AN2⇒AC2=4AN2
AN=NC=12AC(gt)AN=NC=12AC(gt)
⇒BC2=4BM2⇒BC2=4BM2
Bên cạnh đó, áp dụng tính chất trọng tâm, ta được:
AG=2GMAG=2GM
⇒AG2=4GM2⇒AG2=4GM2
BG=2GNBG=2GN
⇒BG2=4GN2⇒BG2=4GN2
Khi đó:
a2+b2a2+b2
=BC2+AC2=BC2+AC2
=4BM2+4AN2=4BM2+4AN2
=4(BG2+GM2)+4(AG2+GN2)(Pytago)=4(BG2+GM2)+4(AG2+GN2)(Pytago)
=4(BG2+AG2)+4GM2+4GN2=4(BG2+AG2)+4GM2+4GN2
=4AB2+AG2+BG2=4AB2+AG2+BG2
=4AB2+AB2=4AB2+AB2
=5AB2=5AB2
=5c2=5c2
Vậy a2+b2=5c2
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔABC có
AM là đường cao
CE là đường cao
AM cắt CE tại H
Do đó: H là trực tâm
=>BH\(\perp\)AC
c: BC=12cm nên BM=CM=6cm
=>AM=8cm