Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{CAI}+\widehat{BAI}=90^0\)
\(\widehat{CIA}+\widehat{HAI}=90^0\)
mà \(\widehat{BAI}=\widehat{HAI}\)
nên \(\widehat{CAI}=\widehat{CIA}\)
hay ΔCIA cân tại C
b: Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
Xét ΔIAD có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIAD cân tại I
Ta có: \(\widehat{IDA}=\widehat{IAD}\)
\(\widehat{IDB}=\widehat{IAB}\)
mà \(\widehat{IAD}=\widehat{IAB}\)
nên \(\widehat{IDA}=\widehat{IDB}\)
hay DI là tia phân giác của góc BDA
A B C I M N
a, xét tam giác ABC cân tại A (gt)
AI _|_ BC (gt)
=> AI đồng thời là đường trung tuyến của tam giác ABC (đl)
=> I là trung điểm của BC (đn)
b, tam giác ABC vuông cân tại A (gt)
=> góc ABC = 45 (đl)
xét tam giác AIB vuông tại I
=> tam giác AIB vuông cân
AIC tương tự
c, AM + MB = AB
AN + NC = AC
AM = NC (gt)
AB = AC do tam giác ABC cân (gt)
=> MB = AN (1)
BI = IC do I là trung điểm của BC (câu a)
IC = AI do tam giác IAC cân (câu b)
=> BI = AI (2)
xét tam giác MBI và tam giác NAI có góc MBI = NAI = 45 (3)
(1)(2)(3) => tam giác MI = tam giác NAI (c-g-c)
d, góc AIB = 90 => góc BIM + góc MIA = 90
tam giác MI = tam giác NAI => góc BIM = góc AIN (đn)
=> góc AIN + góc MIA = 90
=> góc MIN = 90
tam giác MI = tam giác NAI => NI = IM (đn)
=> tam giác MIN vuông cân tại I (dh)
a: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔABI=ΔACI
a, Xét ΔAIB và ΔAIC có:
AB=AC (ΔABC cân tại A)
Chung AI
IB=IC (gt)
⇒ΔAIB = ΔAIC (c.c.c)
b, Xét ΔIHB và ΔIKC có:
\(\widehat{IHB}=\widehat{IHC}\left(=90^o\right)\)
IB=IC(gt)
\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A))
\(\Rightarrow\)ΔIHB = ΔIKC (ch-gn)
\(\Rightarrow IH=IK\)(2 cạnh tương ứng)
a)Xét tam giác AIB và tam giác AIC
AB=AC(do tam giác ABC cân)
B=C(do tam giác ABC cân)
AI là cạnh chung
\(\Rightarrow\)tam giác AIB = tam giác AIC(c.g.c)
b)Vì tam giác AIB = tam giác AIC(c.g.c)
\(\Rightarrow\)AIB=AIC(cặp góc tương ứng)
Mà AIB+AIC=1800(kề bù)
\(\Rightarrow\)AIB=AIC=1800:2=900
Do đó AI\(\perp\)BC
Vậy AI là đường cao của tam giác AIC
Bài này lớp 6 cũng làm được bạn ạ quá dễ
A B C I