K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

Đây là nâng cao à,khó quá mk học lớp 8 nhưng ko giải đc

9 tháng 1 2019

nick mi đổi tên ah

27 tháng 12 2021

mới lớp 7 a ới

20 tháng 5 2017

A B C H D b a

Vì câu a dễ nên mik chỉ làm câu b thôi nhé --hơi dài đấy , cần kiên nhẫn đọc--hoặc tham khảo cách nào ngắn gọn hơn cũng được , hình chỉ minh họa , độ chính xác ko cao

==================== 

Kẻ BH là đường cao của tam giác ABC 

\(\Delta BAD\) cân tại B ( BA=BD) có BH là đường cao nên cũng là đường trung tuyến

=> AH = \(\frac{AD}{2}\)

\(\Delta ABC\) có BD là đường phân giác trong nên : \(\frac{DA}{DC}=\frac{AB}{BC}=\frac{b}{a}\)

=>\(\frac{DA}{b}=\frac{DC}{a}=\frac{DA+DC}{a+b}=\frac{AC}{a+b}=\frac{b}{a+b}\)=> \(DA=\frac{b^2}{a+b}\)

\(\Delta HAB\) vuông tại H , theo định lí Pi - ta - go ta có :

AB2 = BH2 + AH2 => BH2 = AB2 -AH\(b^2-\frac{AD^2}{4}\) (1)

\(\Delta HBC\) vuông tại H , theo định lí Pi-ta-go , ta suy ra :

BH2 = BC2 - HC2 = BC2 - (AC - AH)2 = \(a^2-\left(b-\frac{AD}{2}\right)^2\)\(a^2-b^2+b.AD-\frac{AD^2}{4}\left(2\right)\)

Từ (1) và (2) ta suy ra :

        \(b^2-\frac{AD^2}{4}\)  =  \(a^2-b^2+b.AD-\frac{AD^2}{4}\left(2\right)\)

<=> \(b^2-a^2=b.AD-b^2\)

<=>\(\left(b-a\right)\left(b+a\right)=b.\frac{b^2}{a+b}-b^2\)

<=>\(\left(b-a\right)\left(b+a\right)=\frac{-ab^2}{a+b}\)

<=>\(\frac{a-b}{ab}=\frac{b}{\left(a+b\right)^2}\)

<=>\(\frac{1}{a}-\frac{1}{b}=\frac{b}{\left(a+b\right)^2}\) (đpcm)

21 tháng 5 2017

Sao cách của bn giống hệt sách kẻ thêm hình phụ của nguyễn đức tấn nhỉ :))) 

9 tháng 7 2020

1)

A B H D c m n

Kẻ AH là đường cao của ABC

Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)

\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)

\(\Delta ABC\)có AD là tia phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)

Từ (1)(2) 

\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)

Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)

12 tháng 3 2017

a.) từ các tia phân giác suy ra được OE/OB=AE/AB=EC/BC 

suy ra AE/c=EC/a

áp dụng tính chất dãy tỉ số bằng nhau ta có :

 AE/c=EC/a=AE+EC/c+a=AC/c+a=b/c+a

suy ra AE=bc/c+a 

tương tự ta có AF=bc/a+b

ta có OB/OE=AB/AE=c/AE

suy ra OB/OE+OB=c/AE+c (ko bik bạn học cái này chưa)

OB/BE=c/AE+c(1)

tương tự ta lại có OC/CF=b/AF+b(2)

từ (1) và (2) suy ra OB.OC/BE.CF=bc/(AE+c)(AF+b)=1/2 

nhân chéo ta có 2bc=(AE+c)(AF+b)=(bc/(c+a)+c)(bc/(a+b)+b)

2bc=(c(a+b+c)/(a+c))(b(a+b+c)/(a+b))

2bc=bc(a+b+c)^2/(a+c)(a+b)

2=(a+b+c)^2/(a+c)(a+b)

suy ra (a+b+c)^2=2(a+c)(a+b)

tách ra rút gọn còn a^2=b^2+c^2 

suy ra tam giác ABC vuông tại A

3 tháng 8 2016

Bài 1:

Gọi chiều dài là x,gọi chiều rộng là y

Vì chiều rộng kém chiều dài 20cm ta có: x-20=y hay x-y=20  (1)

Vì chu vi hình chữ nhật là 72, ta có: (x+y).2=72 => x+y=36   (2)

Từ (1)(2) ta có:\(\begin{cases}x-y=20\\x+y=36\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\20+y+y=36\end{cases}\)

\(\Leftrightarrow\begin{cases}x=20+y\\2y=16\end{cases}\) \(\Leftrightarrow\begin{cases}x=20+y\\y=8\end{cases}\) \(\Leftrightarrow\begin{cases}x=28\\y=8\end{cases}\)

Diện tịhs hình chữ nhật là: x.y=28.8=224

  

 

3 tháng 8 2016

Bài 2

Xét ΔHAB và ΔACB có:

    \(\widehat{AHB}=\widehat{BAC}=90\)

   \(\widehat{B}\) : góc chung

=>ΔHAB~ΔACB(g.g)

b) Xét ΔABC vuông tại A(gt)

=>\(BC^2=AB^2+AC^2\) (theo định lý pytago)

=>\(BC^2=12^2+16^2=400\)

=>BC=20cm

Vì ΔHAB~ΔACB(cmt)

=>\(\frac{AH}{AC}=\frac{AB}{BC}\)

=>\(AH=\frac{AB\cdot AC}{BC}=\frac{12\cdot16}{20}=9,6cm\)