K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔABC cân tại A(gt)

mà AK là đường cao ứng với cạnh đáy BC(gt)

nên AK là đường trung tuyến ứng với cạnh BC(tính chất tam giác cân)

⇒K là trung điểm của BC

\(\Rightarrow BK=CK=\frac{BC}{2}=\frac{6cm}{2}=3cm\)

Áp dụng định lí pytago vào ΔABK vuông tại K, ta được:

\(AB^2=AK^2+BK^2\)

\(\Leftrightarrow AK^2=AB^2-BK^2=5^2-3^2=16\)

hay \(AK=\sqrt{16}=4cm\)

Vậy: AK=4cm

b)

Sửa đề: Chứng minh \(IA\cdot IK=IB\cdot IH\)

Xét ΔIAH vuông tại H và ΔIBK vuông tại K có

\(\widehat{AIH}=\widehat{BIK}\)(hai góc đối đỉnh)

Do đó: ΔIAH∼ΔIBK(g-g)

\(\frac{IA}{IB}=\frac{IH}{IK}\)

hay \(IA\cdot IK=IB\cdot IH\)(đpcm)

c) Xét ΔBHC vuông tại H và ΔAKC vuông tại K có

\(\widehat{C}\) chung

Do đó: ΔBHC∼ΔAKC(g-g)

\(\frac{BH}{AK}=\frac{HC}{KC}=\frac{BC}{AC}\)

\(\frac{BH}{4}=\frac{HC}{3}=\frac{6}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{BH}{4}=\frac{6}{5}\\\frac{HC}{3}=\frac{6}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\frac{4\cdot6}{5}=\frac{24}{5}=4.8cm\\HC=\frac{6\cdot3}{5}=\frac{18}{5}=3.6cm\end{matrix}\right.\)

Vậy: BH=4.8cm; HC=3.6cm

d) Ta có: \(\frac{CH}{CB}=\frac{3.6}{6}=\frac{3}{5}\)

\(\frac{CK}{CA}=\frac{3}{5}\)

Do đó: \(\frac{CH}{CB}=\frac{CK}{CA}\)\(\left(=\frac{3}{5}\right)\)

Xét ΔHCK và ΔBCA có

\(\frac{CH}{CB}=\frac{CK}{CA}\)(cmt)

\(\widehat{C}\) chung

Do đó: ΔHCK∼ΔBCA(c-g-c)

30 tháng 4 2017

a, Xét tg ABC và tg ABH:

H=B=90

 góc chung

=> tg ABC đồng dạng tg ABH

b, Vì tg ABC đồng dạng với tg ABH.

Nên: AB/AH=AC/AB

=>AB^2=AH.AC

=>AB^2=4.13

=>AB=7,2cm

c, Hình như đề sai.

5 tháng 6 2017

Trả lời :

1) Xét tam giác BHA và tam giác BAC có :

\(\widehat{B}\)chung

\(\widehat{H}=\widehat{A}=90^o\)

\(\Rightarrow\)Tam giác BHA ~ tam giác BAC ( g.g )

\(\Rightarrow\)\(\frac{AB}{BC}\)\(\frac{BH}{AB}\)

2) Ta có \(AB^2\)\(BH.BC\)

\(\Rightarrow\)\(AB^2=9\cdot\left(9+16\right)\)

\(\Rightarrow AB^2=225\)

\(\Rightarrow AB=15\left(cm\right)\)

Còn lại bạn tự tìm nha mk chưa nghĩ ra

5 tháng 6 2017

Mọi người có thể giúp em câu 4 được không ạ em cảm ơn ạ

23 tháng 5 2020

có làm mới có ăn

8 tháng 6 2015

Xét tam giác AHB vuông tại H và Tam giác CHA vuông tại H có :

                     HAB = HCA (hai góc phụ nhau)

 => tam giác AHB đồng dạng AHC

B,Tam giác AHB vuông tại H , theo pytaago => BH = \(\sqrt{AB^2-AH^2}=9\) 

AHB đồng dang CHA => AH/CH=BH/AH => AH^2=BH.CH => CH = AH^2/BH = 12^2/9=16

TAm giác AHC vuông tại H , theo py ta go : AC  = \(\sqrt{AH^2+HC^2}=20\)

C,BC = BH +HC = 9+16 = 25 

EC/BC = 5/25 = 1/5 (1)

FC/AC = 4/20 = 1/5(2)

Từ (1) và (2)=> EC/BC = FC/AC

=> Tam giác ABC đồng dạng với TAm giác FEC (C chung EC/BC=FC/AC , c.g.c)

=> BAC = EFC = 90 độ => FEC vuông tại F

D,ABC đồng dạng FEC => AC/FC = BC/ EC => EC.AC=FC.BC

4 tháng 3 2017

cho tam 

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

caau b,c đâu em