K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

ABC cân A nên AD cũng là đường cao

\(BD=\dfrac{1}{2}BC=3\left(cm\right)\)

Áp dụng PTG: \(AD=\sqrt{AB^2-BD^2}=\sqrt{91}\left(cm\right)\)

22 tháng 1 2020

3 5 B A C E D

a ) Xét \(\Delta ABC\)vuông tại A (gt) có :

\(AB^2+AC^2=BC^2\)( định lí Py - ta - go )

\(\Rightarrow3^2+AC^2=5^2\)

\(\Rightarrow AC^2=5^2-3^2\)

\(\Rightarrow AC^2=25-9\)

\(\Rightarrow AC^2=16\)

\(\Rightarrow AC=4\left(cm\right)\) ( vì AC > 0 )

b ) Xét 2 \(\Delta\)vuông ABE và DBE có :

\(\widehat{BAE}=\widehat{BDE}=90^0\left(gt\right)\)

\(AB=DB\left(gt\right)\)

BE : cạnh chung 

Suy ra \(\Delta ABE=\Delta DBE\) ( cạnh góc vuông - góc nhọn kề )

\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)( 2góc tương ứng )

\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABD}\)

Hay BE là tia phân giác của \(\widehat{ABC}\)

c ) Theo câu b ) ta có : \(\Delta ABE=\Delta DBE.\)

\(\Rightarrow AE=DE\)( 2 cạnh tương ứng )

+ Xét \(\Delta DEC\)vuông tại D (gt) có :

Cạnh huyền EC là cạnh lớn nhất ( tính chất tam giác vuông )

\(\Rightarrow EC>DE\)

Mà \(DE=AE\left(cmt\right)\)

\(\Rightarrow EC>AE\)

Hay \(AE< EC\)

d ) Vì \(AB=DB\left(gt\right)\)

\(\Rightarrow B\)thuộc đường trung trực của AD ( 1)

+ Vì \(AE=DE\left(cmt\right)\)

\(\Rightarrow E\)thuộc đường trung trực của AD (2)

Từ (1) và (2) => BE là đường trung trực của AD ( đpcm)

Chúc bạn học tốt !!!

Trả lời:

P/s: Học kém Hình nên chỉ đucợ mỗi câu a

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)

                                     ~Học tốt!~

14 tháng 3 2017

A B C D E 1 1 1 2 2 1

\(\Delta ABC\)cân tại A nên\(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{BAC}}{2}=75^0\)

Trên nửa mặt phẳng bờ BC chứa A lấy E sao cho\(\widehat{B_1}=\widehat{C_1}=45^0\)

=>\(\widehat{ABE}=75^0-45^0=30^0;\Delta EBC\)vuông cân tại E =>\(BE=EC=\frac{BC}{\sqrt{2}}=\sqrt{2}\left(cm\right)\)(định lí Pitago)

\(\Delta ABE,\Delta BAD\)có AB chung ; BE = AD\(\left(=\sqrt{2}cm\right)\);\(\widehat{ABE}=\widehat{BAD}\left(=30^0\right)\)

\(\Rightarrow\Delta ABE=\Delta BAD\left(c.g.c\right)\Rightarrow\widehat{A_1}=\widehat{B_2}\)

Lại có\(\Delta AEB=\Delta AEC\left(c.c.c\right)\)nên\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=15^0\Rightarrow\widehat{B_2}=15^0\)

\(\Rightarrow\widehat{D_1}=\widehat{BAD}+\widehat{B_2}=45^0\)(\(\widehat{D_1}\)là góc ngoài\(\Delta ABD\)) ;\(\widehat{DBC}=75^0-15^0=60^0\)

\(\Delta BDC\)\(\widehat{D_1}< \widehat{DBC}< \widehat{DCB}\left(45^0< 60^0< 75^0\right)\)nên BC < DC < BD

14 tháng 3 2017

bai nay trong sach nang cao toan 7 trang 141

a) tam giác ABC vuông tại A

=> AB2 + AC2 = BC2 (định lý py-ta-go)

=> 92 + AC2 = 152

=> AC2 = 225 - 81

=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)

t i c k đúng nhé

a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)

                              => góc C < góc B < góc A (định lý)

24 tháng 3 2017

Các bạn giải giúp mình đi. Bài khó quá TT_TT

24 tháng 3 2017

Ngày mai mình nộp bài rồi, mong các bạn chỉ bài giúp mình . mình không hiểu gì về 2 bài toán này cả TT_TT

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0