Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhá
Vì tam giác ABC cân tại A nên:
\(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B}=\widehat{DME}\)
Suy ra: \(\widehat{C}=\widehat{DME}\)
Mặt khác: \(\widehat{BME}=\widehat{BMD}+\widehat{DME}=\widehat{MEC}+\widehat{C}\)(góc ngoài của tam giác MEC)
Suy ra: \(\widehat{BMD}=\widehat{MEC}\)
Xét tam giác BMD và tam giác CEM có:
+ \(\widehat{B}=\widehat{C}\)(gt)
+\(\widehat{BMD}=\widehat{MEC}\)(cmt)
Do đó: \(\Delta BMD~\Delta CEM\)(g.g)
Suy ra: \(\frac{BM}{CE}=\frac{BD}{CM}\Leftrightarrow BM\cdot CM=CE\cdot BD\)
Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi
Vậy BD.CE không đổi
ý c nhé, a và b dễ tự làm nhé:
https://vn.answers.yahoo.com/question/index?qid=20110323013140AAJ5GpF
minh gợi ý theo cách của mình là:
A B C M F Vì góc BAH là phân giác nên ta có:
\(\frac{AB}{BE}=\frac{AH}{HE}\) ( hãy chứng minh \(\frac{AB}{BE}=\frac{AF}{EC}\)nếu họ nói chứng minh CF ss AE thì ta có : \(\frac{AH}{AF}=\frac{EH}{EC}\)hay \(\frac{AH}{HE}=\frac{ÀF}{EC}\)) vì hai tỉ số trên cùng bằng \(\frac{AH}{HE}\)sau đó tự chứng minh ....
bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau
A D B C K I 1 1 2 1
a) Vì ABCD là hình bình hành ( GT )
\(\Rightarrow AD//BC\left(Tc\right)\)
\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )
Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )
\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)
Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)
\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết )
b) Ta có : CK là phân giác của góc DCI ( GT )
\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)
AI là phân giác của góc BAK ( GT )
\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)
Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)
Từ ( 1 ) ,(2 ) ,( 3)
\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)
Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)
\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)
c) Bạn tự làm nốt nha !
a,Do \(\Delta ABC\) cân \(\Rightarrow\widehat{B}=\widehat{C}\)
\(\Rightarrow\dfrac{1}{2}\widehat{B}=\dfrac{1}{2}\widehat{C}\\ \Rightarrow\left\{{}\begin{matrix}\widehat{IBA}=\widehat{ICA}\\\widehat{IBC}=\widehat{ICB}\end{matrix}\right.\)
\(\widehat{IBC}=\widehat{ICB}\\ \Rightarrow\Delta BIC\text{ cân}\\ \Rightarrow IB=IC\)
b,
Xét \(\Delta AIB\) và \(\Delta AIC\):
\(IB=IC\left(cmt\right)\\ \widehat{IBA}=\widehat{ICA}\left(cmt\right)\\ BA=CA\left(gt\right)\)
\(\Rightarrow\)\(\Delta AIB=\)\(\Delta AIC\)
c,
Kẻ tia phân giác của \(\widehat{A}\),
Vì \(I\) là giao điểm của hai đường phân giác thì đường phân giác thứ ba sẽ đi qua điểm \(I\)
\(\Rightarrow AI\) là đường phân giác từ đỉnh A
Trong tan giác cân, đường phân giác ứng với cạnh đáy sẽ đồng thời là đường trung tuyến ứng với cạnh đáy.
\(\Rightarrow AI\) đi qua trung điểm của \(BC\)
d,
\(\widehat{A}=50^o\\ \Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-50^o=130^o\\ \widehat{B}=\widehat{C}=\dfrac{130^o}{2}=65^o\\ \Rightarrow\widehat{IBC}=\widehat{ICB}=\dfrac{65^o}{2}\\ \Rightarrow\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\left(\dfrac{65^o}{2}+\dfrac{65^o}{2}\right)=180^o-65^o=115^o\)
Vậy \(\widehat{BIC}=115^o\)