Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)cân ở B, \(\widehat{ABC}=80^0\)nên \(\widehat{BAC}=\widehat{BCA}=50^0\)
Vì \(\widehat{IAC}=20^0,\widehat{ICA}=30^0\)nên \(\widehat{IAB}=40^0,\widehat{ICB}=20^0\)
B A C K I
Kẻ tia phân giác của \(\widehat{BAI}\)cắt tia CI ở K,ta có \(\widehat{BAK}=\widehat{KAI}=20^0\)
=> \(\widehat{KAC}=30^0=\widehat{KCA}\).Tam giác KAC cân tại ở K nên KA = KC
Xét \(\Delta AKB\)và \(\Delta CKB\)có :
AK = CK(gt)
AB = CB(gt)
KB cạnh chung
=> \(\Delta AKB=\Delta CKB\left(c-c-c\right)\)
=> \(\widehat{AKB}=\widehat{BKC}\)
Và \(\widehat{KBA}=\widehat{KBC}=40^0\)
Lại có : \(\widehat{KCB}=20^0\),vì thế \(\widehat{CKB}=120^0=\widehat{AKB}\)
Tam giác cân AKC có hai góc ở đáy bằng nhau và bằng 300 nên góc ở đỉnh \(\widehat{AKC}=120^0\)
\(\Delta AKB=\Delta AKI\left(g-c-g\right)\)nên góc ở đỉnh \(\widehat{BAI}=40^0\)
Do đó \(\widehat{AIB}=70^0\)
Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo!