Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC và \(\widehat{BAH}=\widehat{CAH}\)
b: Ta có: HB=HC
H nằm giữa B và C
Do đó: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=4\left(cm\right)\)
ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=5^2-4^2=9\)
=>\(AH=\sqrt{9}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
a) Xét hai tam giác vuông $AHB$ và $AHC$ có:
$AH$ là cạnh chung;
$AB = AC$ (gt);
Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)
Suy ra $HB = HC$ (Hai cạnh tương ứng)
$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).
b) Xét hai tam giác vuông $ADH$ và $AEH$ có:
$AH$ là cạnh chung;
$\widehat{BAH} = \widehat{CAH}$ (cmt);
Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).
Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó:ΔADH=ΔAEH
Suy ra: AD=AE
hay ΔADE cân tại A
d: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác
c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>AE=AF
=>ΔAEF cân tại A
mà AI là phân giác
nên AI là trung tuyến
A B C H D E F 1 2
a. Vì \(\Delta ABC\)cân tại A \(\Rightarrow\)AB = AC, góc B = góc C.
Xét \(\Delta ABH\)và \(\Delta ACH\)có :
AB = AC
AH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền - cạnh góc vuông).
b.Vì \(\Delta ABH=\Delta ACH\)\(\Rightarrow\)góc AHB = góc AHC ( góc tương ứng )
Mà góc AHB +AHC = 180 độ ( kề bù ) => góc AHB = AHC = 90 độ => AH\(\perp\)BC.
c.Xét tam giac HDB và HEC có :
HB = HC ( vì tg ABH = ACH )
góc B = góc C
=> tam giác HDB = HDC ( cạnh huyền - góc nhọn )
=>BD = CE ( cạnh tương ứng )
Vì AB = AC => AD = AE.
Vì tg AHB = AHC => góc A1 = A2 ( góc tương ứng )
Xét tg AFD và AFE có :
AD = AE
Góc A1 = A2
AF là canh chung
=> Tg AFD = AFE ( c-g-c)
=> góc ADF = AEF ( góc tương ứng )
Ta có : góc A + ADF + AEF = góc A + ABC + ACB = 180 độ
=> 2.ADF = 2.ABC => Góc ADF = ABC mà 2 góc này nằm ở vị trí đồng vị => DE \(//\)BC.
A B C H D E
a) Xét \(\Delta BAH\)và \(\Delta CAH\)có:
AH chung
\(\widehat{BAH}=\widehat{CAH}\)(AH là phân giác \(\widehat{BAC}\))
AB=AC (\(\Delta\)ABC cân tại A)
=> \(\Delta BAH=\Delta CAH\left(cgc\right)\)
b) Có AH là phân giác \(\widehat{BAC}\left(gt\right)\), \(\Delta\)ABC cân tại A (gt)
=> AM là đường phân giác trong của tam giác ABC cân tại A
=> AM trung với đường cao và đường trung tuyến
=> AM _|_ BC(đpcm)
d)
1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
2: Ta có: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=64\)
=>\(HA=\sqrt{64}=8\left(cm\right)\)
3: Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AH
4: Xét ΔAHM có
AE là đường trung tuyến
AE là đường cao
Do đó: ΔAHM cân tại A
=>AM=AH
Ta có: ΔAHN cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAN
=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)
Ta có: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM
=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)
Ta có: AM=AH
AH=AN
Do đó: AM=AN
Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)
=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)
Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ
=>góc MAN=180 độ
=>\(2\cdot\widehat{BAC}=180^0\)
=>\(\widehat{BAC}=90^0\)
a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC
AH⊥BC ⇒ gócAHB=gócAHC
Xét △ABH và △ACH có:
gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)
⇒ △ABH=△ACH (ch-gn)
b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)
Xét △DAH và △EAH có
gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)
AH là cạnh chung
⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)
⇒ △ADE cân tại A
c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)
△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)
⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị
⇒ DE//BC