K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có DE//BC

nên AD/AB=AE/AC

mà AB=AC

nên AD=AE
hay ΔADE cân tại A

b: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{A}\) chung

AE=AD
DO đó: ΔABE=ΔACD

Suy ra: BE=CD

19 tháng 2 2022

mấy câu trên thì tôi làm được rồi ấy, chỉ có câu D tôi bí thôi...

 

27 tháng 1 2019

tamgiac ABC can tai A(gt) => goc ABC = goc ACB      (1)

co DE // BC (gt)               

goc ADE dong vi goc DBC 

goc AED dong vi goc ECB 

tu 3 dk tren => goc ADE = goc DBC va goc AED = goc ECB       (2)

(1)(2) => goc ADE = goc AED

=> tamgiac ADE can tai A (dau hieu)

b, tamgiac ABC can tai A (gt) => AB = AC

tamgiac ADE can tai A (cau a) => AD = AE 

ma AD + DB = AB va AE + EC = AC 

nen BD = EC                  (4)

goc BDE la goc ngoai cua tamgiac ADE => goc BDE = goc A + goc AED (tc)

goc CED la goc ngoai cua tamgiac ADE => goc CED = goc A + goc ADE (tc) 

ma goc AED = goc ADE 

nen BDE = goc CED                 (5)

xet tamgiac DEB va tamgiac EDC co : DE chung        (6)

(4)(5)(6) => tamgiac DEB = tamgiac EDC    (c - g - c)

=> BE = CD (dn)

12 tháng 2 2020

Hình bạn tự vẽ nha!

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân) (1).

+ Vì \(DE\) // \(BC\left(gt\right)\)

=> \(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{ABC}\\\widehat{AED}=\widehat{ACB}\end{matrix}\right.\) (vì các góc đồng vị) (2).

Từ (1) và (2) => \(\widehat{ADE}=\widehat{AED}.\)

=> \(\Delta ADE\) cân tại \(A.\)

b) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(AB=AC\) (tính chất tam giác cân).

+ Vì \(\Delta ADE\) cân tại \(A\left(cmt\right).\)

=> \(AD=AE\) (tính chất tam giác cân).

Xét 2 \(\Delta\) \(ABE\)\(ACD\) có:

\(AB=AC\left(cmt\right)\)

\(\widehat{A}\) chung

\(AE=AD\left(cmt\right)\)

=> \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)

=> \(BE=CD\) (2 cạnh tương ứng).

c) Sửa lại đề là BE cắt CD ở O nhé.

+ Xét \(\Delta OBC\) có:

\(OB+OC>BC\) (theo bất đẳng thức trong tam giác) (3).

+ Xét \(\Delta ODE\) có:

\(OD+OE>DE\) (theo bất đẳng thức trong tam giác) (4).

Cộng theo vế (3) và (4)

\(\Rightarrow OB+OC+OD+OE>DE+BC\left(đpcm\right).\)

Chúc bạn học tốt!

a: Xét ΔABC có DE//BC

nên AD/AB=AE/AC

mà AB=AC

nên AD=AE

b: Xét ΔABE và ΔACD có

AB=AC

góc BAE chung

AE=AD
Do đó ΔABE=ΔACD

Suy ra: BE=CD

c: OD+OE>DE

OB+OC>BC

Do đó;OD+OE+OB+OC>DE+BC

a) Xét  ΔABD và ΔEBD:

+) AB = BE

+) DB chung

+) ˆABD=ˆEBDABD^=EBD^  (Vì BD là phân giác)

Suy ra: ΔABD=ΔEBD (c.g.c)

- Suy ra DA = DE và DE ⊥⊥ BC

Tam giác EDC có: EC > CD – DE = CD – DA

Suy ra BC – BA > CD – DA

Có AH // DE ⇒ˆHAE=ˆAED⇒HAE^=AED^ (SLT)

Tam giác ADE cân ⇒ˆDAE=ˆAED⇒DAE^=AED^

Suy ra AE là phân giác của ˆHAC^

Kẻ EF ⊥ AC ⇒⇒ ΔAHE=ΔAFE (1)

Tam giác EFC vuông tại F ⇒ EC > EF   (2)

Từ (1) và (2) ⇒ EC > HE.

P/s : hình thì tự vẽ :v


 

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm