Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có: EB=EI(gt)
mà E nằm giữa hai điểm B và I
nên E là trung điểm của BI
Xét tứ giác AICB có
E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)
E là trung điểm của đường chéo BI(cmt)
Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)
Ta có: DC=DK(gt)
mà D nằm giữa K và C
nên D là trung điểm của KC
Xét tứ giác AKBC có
D là trung điểm của đường chéo KC(cmt)
D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)
Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)
Từ (1) và (2) suy ra AK=AI(3)
Từ (1) và (2) suy ra AK//AI
mà AK và AI có điểm chung là A
nên K,A,I thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)
b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm
Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)
mà F∈KB
nên AC//KF
Xét ΔIKF có
A là trung điểm của KI(cmt)
AC//KF(cmt)
Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)
Ta có: CB//AK(cmt)
mà I∈AK
nên CB//KI
Xét ΔFIK có
C là trung điểm của FI(cmt)
CB//KI(cmt)
Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)
Xét ΔFKI có
FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)
IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)
KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)
Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI
hay FA,IB,KC đồng quy(đpcm)
a)
Ta có: EB=EI(gt)
mà E nằm giữa hai điểm B và I
nên E là trung điểm của BI
Xét tứ giác AICB có
E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)
E là trung điểm của đường chéo BI(cmt)
Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)
Ta có: DC=DK(gt)
mà D nằm giữa K và C
nên D là trung điểm của KC
Xét tứ giác AKBC có
D là trung điểm của đường chéo KC(cmt)
D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)
Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)
Từ (1) và (2) suy ra AK=AI(3)
Từ (1) và (2) suy ra AK//AI
mà AK và AI có điểm chung là A
nên K,A,I thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)
b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm
Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)
mà F∈KB
nên AC//KF
Xét ΔIKF có
A là trung điểm của KI(cmt)
AC//KF(cmt)
Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)
Ta có: CB//AK(cmt)
mà I∈AK
nên CB//KI
Xét ΔFIK có
C là trung điểm của FI(cmt)
CB//KI(cmt)
Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)
Xét ΔFKI có
FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)
IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)
KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)
Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI
hay FA,IB,KC đồng quy(đpcm)
a)
Ta có: EB=EI(gt)
mà E nằm giữa hai điểm B và I
nên E là trung điểm của BI
Xét tứ giác AICB có
E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)
E là trung điểm của đường chéo BI(cmt)
Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)
Ta có: DC=DK(gt)
mà D nằm giữa K và C
nên D là trung điểm của KC
Xét tứ giác AKBC có
D là trung điểm của đường chéo KC(cmt)
D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)
Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)
Từ (1) và (2) suy ra AK=AI(3)
Từ (1) và (2) suy ra AK//AI
mà AK và AI có điểm chung là A
nên K,A,I thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)
b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm
Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)
mà F∈KB
nên AC//KF
Xét ΔIKF có
A là trung điểm của KI(cmt)
AC//KF(cmt)
Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)
Ta có: CB//AK(cmt)
mà I∈AK
nên CB//KI
Xét ΔFIK có
C là trung điểm của FI(cmt)
CB//KI(cmt)
Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)
Xét ΔFKI có
FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)
IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)
KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)
Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI
hay FA,IB,KC đồng quy(đpcm)
a) Xét Tàm giác vuông OBK và Tam giác vuông OAH có :
OA = OB (GT)
<O chung
=> Tam giác vuông OBK = Tam giác vuông OAH ( cạnh góc vuông - góc nhọn kề )
=> OH = OK (2CTU)
Xét Tam giác OHK có :
OH = OK
=> Tam giác OHK cân tại O (dpcm)
b) Vì Tam giác OBK và Tam giác OAH (cmt)
=> <OKB = <OHA (2GTU)
TC : OH = OK (cmt)
OA = OB (GT)
mà OH = OB + BH
OK = OA + AK
=> AK = BH
Xét Tam giác vuông AIK và Tam giác vuông BIH
AK = BH
<OKB = <OHA
=> Tam giác vuông AIK = Tam giác vuông BIH ( cạnh góc vuông - góc nhọn kề)
=> AI = BI (2CTU)
Xét Tam giác OAI = Tam giác OBI có :
OA = OB (GT)
OI chung
AI = BI (cmt)
=> Tam giác OAI = Tam giác OBI (c.c.c)
=> <AOI = <BOI (2GTU)
=> OI là tia phân giác của <xOy (dpcm)
a)
Ta có: EB=EI(gt)
mà E nằm giữa hai điểm B và I
nên E là trung điểm của BI
Xét tứ giác AICB có
E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)
E là trung điểm của đường chéo BI(cmt)
Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)
Ta có: DC=DK(gt)
mà D nằm giữa K và C
nên D là trung điểm của KC
Xét tứ giác AKBC có
D là trung điểm của đường chéo KC(cmt)
D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)
Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)
Từ (1) và (2) suy ra AK=AI(3)
Từ (1) và (2) suy ra AK//AI
mà AK và AI có điểm chung là A
nên K,A,I thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)
b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm
Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)
mà F∈KB
nên AC//KF
Xét ΔIKF có
A là trung điểm của KI(cmt)
AC//KF(cmt)
Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)
Ta có: CB//AK(cmt)
mà I∈AK
nên CB//KI
Xét ΔFIK có
C là trung điểm của FI(cmt)
CB//KI(cmt)
Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)
Xét ΔFKI có
FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)
IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)
KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)
Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI
hay FA,IB,KC đồng quy(đpcm)