\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 12 2021

Kẻ PD và BE vuông góc AC

Định lý phân giác: \(\dfrac{AN}{NC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AN}{AN+NC}=\dfrac{AB}{AB+BC}\Rightarrow\dfrac{AN}{AC}=\dfrac{AB}{AB+BC}=\dfrac{c}{a+c}\)

Tương tự: \(\dfrac{AP}{AB}=\dfrac{b}{a+b}\)

Talet: \(\dfrac{PD}{BE}=\dfrac{AP}{AB}\)

\(\dfrac{S_{APN}}{S_{ABC}}=\dfrac{\dfrac{1}{2}PD.AN}{\dfrac{1}{2}BE.AC}=\dfrac{AP}{AB}.\dfrac{AN}{AC}=\dfrac{bc}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\dfrac{S_{BPM}}{S_{ABC}}=\dfrac{ac}{\left(a+b\right)\left(b+c\right)}\) ; \(\dfrac{S_{CMN}}{S_{ABC}}=\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\dfrac{S_{APN}+S_{BPM}+S_{CMN}}{S_{ABC}}=\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{S_{ABC}-\left(S_{APN}+S_{BPM}+S_{CMN}\right)}{S_{ABC}}=1-\left(\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{ab}{\left(a+c\right)\left(b+c\right)}\right)\)

\(=\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

2. Do ABC cân tại C \(\Rightarrow AC=BC=a\)

\(\dfrac{BC}{AB}=k\Rightarrow AB=\dfrac{BC}{k}=\dfrac{a}{k}\)

Do đó:

\(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2.a.a.\dfrac{a}{k}}{2a.\left(a+\dfrac{a}{k}\right)\left(a+\dfrac{a}{k}\right)}=\dfrac{k}{\left(k+1\right)^2}\)

NV
13 tháng 12 2021

undefined

2 tháng 12 2015

1) Gọi cạnh tam giác đều là a => đường cao h =\(\frac{a\sqrt{3}}{2}\)=

mà h = 3/2R => \(\frac{a\sqrt{3}}{2}\)=\(\frac{3}{2}.\frac{4}{3}\) =2=> a =\(\frac{4}{\sqrt{3}}\)

S =ah/2 =\(\frac{4}{\sqrt{3}}\).2/2 =\(\frac{4}{\sqrt{3}}\)

2) ABC vuông tại A ( 62+82 =102)

M là điểm chính giữa => AM =CM => OM là trung trực AC => Tam giác OIC vuông tại  I 

 => OI = \(\sqrt{OC^2-IC^2}=\sqrt{5^2-4^2}=3\)

2 tháng 12 2015

câu 2 ; theo đề bài ta có tam giác ABC vuông tại A

VÌ OM là đường kính đi qua dây AC nên OM vuông góc với AC hay OI vuông góc với AC và AI=IC[tính chất đường kính]

Do đó OI song song với AB[cùng vuông góc với AC]

theo định lí ta-lét ta có \(\frac{OI}{AB}=\frac{IC}{AC}\)

mà IC=AC =8/2=4 cm

thay vào giải ra OI=6*4/8=3 cm

còn câu 1 tớ cũng đang định hỏi đây