Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a)xét tam giác ADB và tam giác ADC có
A1=A2(gt)
AD chung
AB=AC(gt)
=> tam giác ADB= tam giác ADC(cgc)
b) vì tam giác BCE vuông tại C=> BEC+EBC=90 độ=> BEC=90 độ-EBC
ta có ACB+ACE=BCE=90 độ=> ACE=90 độ-BCE
vì tam giác ABC cân A=> ABC=ACB
=> BEC=ACE=90 độ-ABC=> tam giác ACE cân A
c) xét tam giác AME và tam giác AMC có
AE=AC( tam giác ACE cân A)
AME=AMC(=90 độ)
AM chung
=> tam giác AME=tam giác AMC(ch-cgv)
=> EM=CM( hai cạnh tương ứng)
=> M là trung điểm => BM là trung tuyến
vì AB=AC mà AC=AE=> AB=AE=> A là trung điểm BE=> CA là trung tuyến
từ tam giác ABD= tam giác ACD=> BD=CD (hai cạnh tương ứng)=> D là trung điểm BC=> ED là trung tuyến
Vì ED giao AC tại N mà ED,AC, BM là trung tuyến=> BM, AC,ED giao nhau tại N=> N thuộc BM=> B,N,M thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: AH=12cm
c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
d: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
a)ta có: góc EAC = góc DAB ( = 90 độ)
=> góc EAC + góc BAC = góc DAB + góc BAC
=> góc EAB = góc DAC
Xét tam giác EAB và tam giác CAD
có: EA = CA ( gt)
góc EAB = góc CAD ( cmt)
AB = AD ( gt)
\(\Rightarrow\Delta EAB=\Delta CAD\left(c-g-c\right)\)
=> EB = CD ( 2 cạnh tương ứng)
( Gọi giao điểm của EB và CD là O; giao điểm của CD và AB là H)
ta có: \(\Delta EAB=\Delta CAD\left(cmt\right)\)
=> góc EBA = góc CDA ( 2 góc tương ứng)
Xét tam giác ADH vuông tại A
có: góc CDA + góc AHD = 90 độ ( 2 góc phụ nhau)
mà góc EBA = góc CDA ( cmt)
góc AHD = góc OHB ( đối đỉnh)
=> góc CDA + góc AHD = góc EBA + góc OHB = 90 độ
=> góc EBA + góc OHB = 90 độ
mà góc EBA, góc OHB là 2 góc phụ nhau
\(\Rightarrow DC\perp BE⋮O\) ( định lí)
b) Xét tam giác EMN và tam giác DAN
có: MN = AN ( gt)
góc ENM = góc DNA ( đối đỉnh)
EN = DN (gt)
\(\Rightarrow\Delta EMN=\Delta DAN\left(c-g-c\right)\)
=> EM = DA ( 2 cạnh tương ứng)
mà DA = AB
=> EM = AB ( = DA)
...
xl bn nha, nhưng mk chỉ bk chứng minh đến đây thoy!
a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE
b,
Xét tam giác ADN và tam giác MEN có:
DN=NE (gt)
góc N1= góc N2 ( đ đ )
AN=MN ( gt)
Suy ra tam giác ADN = tam giác MEN (c.g.c)
Suy ra DA=ME Mà DA = AB ( gt) suy ra ME=AB
Ta có;góc DAB + góc EAC = 180 độ
Suy ra Góc A1 + góc A2 =180 độ ( 1 )
Mặt khác tam giác ADN = tam giác MEN suy ra góc E1 = góc D1
Suy ra ME song song vs AD ( 2 góc SLT)
Suy ra góc MEA + góc A2 =180 độ ( TCP ) ( 2 )
Từ 1 và 2 suy ra góc MEA = góc A1
và ME = AB (gt) ; AE = AC (cmt)
Suy ra Tam giác AME = Tam giác CBA ( c.g.c)
a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)
a) xét tam giác ABH và taam giác MBH có :
AB=BH(BE là tia phân giác)
ABH=HBM(BE là tia phân giác)
BH cạnh chung
=>tam giác ABH =tam giácHBE (c.g c)
b)=>tam giác ABM cân tại B mà BH là phân giác
=>BE là trung trực
=>AHB=MHB=90 độ
c)vì AMC và góc MNC là cặp góc so le trong
=>AM//NC
d)Vì AM//NC(theo c)
mà BH vuông góc với AM
=>BH vông góc với NC (T/C từ vuông góc đến song song)