Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H 2,5
Xét tam giác ABH vuông tại H( AH là đường cao) có:
\(AH=AB.sinB\Rightarrow AB=\frac{AH}{sinB}=\frac{2,5}{sin60^o}=\frac{5\sqrt{3}}{3}\left(cm\right)\)
Xét tam giác ACH vt H (AH là đường cao) có:
\(AH=AC.sinC\Rightarrow AC=\frac{AH}{sinC}=\frac{2,5}{sin40^o}\approx3,9\left(cm\right)\)
Lại có:
+) \(\Delta ABH\) vt H => BH=AH.cot B = 2,5 . cot 60o=\(\frac{5\sqrt{3}}{6}\)(cm)
+) \(\Delta ACH\) vt H => CH=AH.cot C = 2,5 . cot 40o\(\approx3\)(cm)
=> \(BC=BH+CH\approx\frac{5\sqrt{3}}{6}+3\approx4,44\)(cm)
A B C H
a) Áp dụng định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=5^2+12^2=169\)
\(\Leftrightarrow\)\(BC=13\)
b) Áp dụng hệ thức lượng ta có:
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=4\frac{8}{13}\)
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=\frac{25}{13}\)
c) \(sinB=\frac{AC}{BC}=\frac{12}{13}\) \(tanB=\frac{AC}{AB}=\frac{12}{5}\)
\(cosB=\frac{AB}{BC}=\frac{5}{13}\) \(cotB=\frac{AB}{AC}=\frac{5}{12}\)
A B C x y z K
Đặt AB = x>0 , AC = y>0 , BC = z>0
- Theo đề bài , ta có : \(\begin{cases}xy=32\sqrt{6}\\\frac{x}{y}=\frac{\sqrt{6}}{3}\end{cases}\) \(\Leftrightarrow\begin{cases}x=8\\y=4\sqrt{6}\end{cases}\)
Theo định lí Cosin, ta có : \(x^2=y^2+z^2-2yz.cos45^o\Leftrightarrow64=96+z^2-8\sqrt{3}z\)\(\Leftrightarrow\left[\begin{array}{nghiempt}z=4+4\sqrt{3}\\z=-4+4\sqrt{3}\end{array}\right.\)
Vậy BC = \(4+4\sqrt{3}\) hoặc BC = \(4\sqrt{3}-4\)
- Theo định lí Cosin, ta có : \(y^2=x^2+z^2-2xz.cosB\Rightarrow cosB=\frac{x^2+z^2-y^2}{2xz}\)
+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4+4\sqrt{3}\end{cases}\) thì \(cosB=\frac{1}{2}\Rightarrow\widehat{B}=60^o\)
+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4\sqrt{3}-4\end{cases}\) thì \(cosB=-\frac{1}{2}\Rightarrow\widehat{B}=120^o\)
- Để tính diện tích tam giác ABC, ta áp dụng công thức \(S_{\Delta ABC}=\frac{1}{2}BC.AC.sinC\)
Chứng minh như sau : Kẻ đường cao AK (K thuộc BC)
Trong tam giác vuông AKC có : \(AK=sinC.AC\)
Ta có : \(S_{\Delta ABC}=\frac{1}{2}BC.AK=\frac{1}{2}BC.AC.SinC\)
+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4+4\sqrt{3}\end{cases}\) thì \(S_{\Delta ABC}=\frac{1}{2}AC.BC.sin45^o=\frac{1}{2\sqrt{2}}.4\sqrt{6}.\left(4+4\sqrt{3}\right)=24+8\sqrt{3}\)
+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4\sqrt{3}-4\end{cases}\) thì \(S_{\Delta ABC}=\frac{1}{2}AC.BC.sin45^o=\frac{1}{2\sqrt{2}}.4\sqrt{6}.\left(-4+4\sqrt{3}\right)=24-8\sqrt{3}\)