K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

a) AB=AC

    BH=CH

    AH chung

=> \(\Delta AHB=\Delta AHC\left(c.c.c\right)\)

b) \(\Delta AHB=\Delta AHC\)

=> góc AHB= góc AHC

=> AH là tia phân giác góc BAC

c) \(\Delta AHB=\Delta AHC\)

=> góc AHB=gócAHC

Mà 2 góc đó bù nhau

=> AHB =90 đọ

=> \(AH\perp BC\)

Mà HB=HC

=> AH là đường trung trực của BC

a: Xét ΔABH và ΔACH co

AB=AC
góc BAH=góc CAH

AH chung

=>ΔAHB=ΔAHC

b: ΔACB cân tại A

mà AH là phân giác

nên AH vuông góc BC

c: Xét ΔACB có

AH,BK là trung tuyến

AH cắt BK tại G

=>G là trọng tâm

d: AG=2/3AH=6cm

26 tháng 12 2017

mink cũng vậy

26 tháng 12 2017

A B C E H

a)Xét 2tam giác AHB và tam giác AHC có:

AB=AC(gt)

BH=HC(vì H là trung điểm của BC)

AH là cạnh chung

=>tam giác AHB=tam giác AHC(c.c.c)

b)Vì tam giác AHB=tam giác AHC(cmt)

=>góc BHA=góc AHC(2 góc tương ứng)

mà góc BHA+góc AHC=180o(kề bù)

=>góc BHA+góc AHC=180o/2=90o

Vậy AH vuông góc với BC

16 tháng 2 2018

a) Xét t/g AHB & t/g AHC :
* AB = AC ( gt ) 
* BH = CH ( H là trung điểm )
* AH chung 
=> t/g AHB = t/g AHC 
b )

*Ta có : 
Góc AHB = AHC ( t/g AHB = t/g AHC )
mà AHB + AHC = 180 ( kb )
=> AHB = AHC = 180 /2= 90 
=> BH vuông góc BC 
* Góc BAH = CAH ( t/g AHB = t/g AHC )
=> AH là p/g BAC 
c) 
Xét t/g AOE và t/g AOF :
* AE = AF ( gt )
* AO chung 
* Góc EAO = FAO ( t/g _=_)
=> T/g AOE = t/g AOF 
d) .... 
Buồn buồn làm chơi ..
 

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC
b: Xét ΔMBC có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMBC cân tại M

c: Xét ΔAIH vuông tại I và ΔAKH vuông tại K co

AH chung

góc IAH=góc KAH

=>ΔAIH=ΔAKH

=>HI=HK

d: AI=AK

HI=HK

=>AH là trung trực của IK

28 tháng 3 2020

A B C H I I

a) Xét \(\Delta\)AHB và \(\Delta\)AHC có:

AB=AC (\(\Delta\)ABC cân tại A)

BH=HC (H là trung điểm BC)

AH chung

=> △AHB=△AHC (c.c.c)

b) Xét △ABC có H là trung điểm BC

=> AH là đường trung tuyến của △ABC

mà △ABC cân tại A (gt) => AH trùng với đường cao

=> AH _|_ BC. Mà H là trung điểm BC

=> AH là đường trung trực của BC (đpcm)

b) Có H là trung điểm BC => \(BH=CH=\frac{BC}{2}\)mà BC=10cm

=> \(BH=CH=\frac{10}{2}=5cm\)

Có AH _|_ BC (cmt) => △ABH cân tại H

Áp dụng định lý Pytago vào △ABH vuông tại H, ta có:

AH2+BH2=AB2

=> AH2=AB2-BH2

Thay BH=5(cm); AB=13(cm)

=> AH2=132-52

=> AH2=144

=> AH=12(cm) (AH>0)

30 tháng 12 2020

giải giúp tôi với

26 tháng 10 2016

a) Nối A với H, ta có tam giác AHB và tam giác AHC

- Xét tam giác AHB và AHC ta có:

AB=AC ( gt)

AH là cạnh chung

BH=CH ( vì H là trung điểm của BC)

=> Tam giác AHB= Tam giác ẠHC

=> Góc BAH=góc HAC ( hai góc tương ứng)

=> AH là tia phân giác của góc BAC (ĐFCM)

Có tam giác AHB= tam giác AHC

=> góc BHA=góc CHA

Mà B,H,C thẳng hàng => BHC= 180 độ

=> góc BHA=góc CHA=90 độ

=> AH vuông góc với BC (ĐFCM)

Mình biết làm ý a thôi, ý b chịu, mong bạn thông cảm

22 tháng 11 2016

phần b cm ck song song với ab vẽ hình rồi nhìn vào đó mà cm