A(1;-1),B(-2;1),C(3;5)

a) Lập phương trìn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2022

pleas giải giúp mk với

30 tháng 3 2017

a) Ta có = (2; -5). Gọi M(x; y) là 1 điểm nằm trên đường thẳng AB thì AM = (x - 1; y - 4). Ba điểm A, B, M thẳng hàng nên hai vec tơ cùng phương, cho ta:

= <=> 5x + 2y -13 = 0

Đó chính là phương trình đường thẳng AB.

Tương tự ta có phương trình đường thẳng BC: x - y -4 = 0

phương trình đường thẳng CA: 2x + 5y -22 = 0

b) Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.

= (3; 3) => nên nhận vectơ = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:

AH : 3(x - 1) + 3(y -4) = 0

3x + 3y - 15 = 0

=> x + y - 5 = 0

Gọi M là trung điểm BC ta có M \(\left(\dfrac{9}{2};\dfrac{1}{2}\right)\)

Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:

AM : x + y - 5 = 0

10 tháng 6 2017

mạnh nhể, làm cả toán 10

10 tháng 4 2020
AB:2x-5y+18=0 AC:5x-2y+3=0 BC:x+y-2=0 AH:x-y+3=0 AM:x+y-5=0
16 tháng 5 2020

Đường cao AH là đường thẳng đi qua A(1; 4) và vuông góc với BC.

 = (3; 3)  =>   ⊥  nên  nhận vectơ    = (3; 3) làm vectơ pháp tuyến và có phương trình tổng quát:

AH : 3(x – 1) + 3(y -4) = 0

3x + 3y – 15 = 0

=> x + y – 5 = 0

Gọi M là trung điểm BC ta có M ()

Trung tuyến AM là đường thẳng đi qua hai điểm A, M. Theo các viết phương trình đường thẳng đi qua hai điểm trong câu a) ta viết được:

AM : x + y – 5 = 0

NV
25 tháng 2 2021

a. \(\overrightarrow{BC}=\left(3;-3\right)=3\left(1;-1\right)\)

Phương trình AH đi qua A và vuông góc BC nên nhận \(\left(1;-1\right)\) là vtpt có dạng:

\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)

b. Gọi M là trung điểm BC \(\Rightarrow M\left(-\dfrac{3}{2};\dfrac{7}{2}\right)\Rightarrow\overrightarrow{AM}=\left(-\dfrac{7}{2};\dfrac{1}{2}\right)=-\dfrac{1}{2}\left(7;-1\right)\)

Phương trình AM qua A và nhận \(\left(7;-1\right)\) là vtcp có dạng: \(\left\{{}\begin{matrix}x=2+7t\\y=3-t\end{matrix}\right.\)

c. Đường trung bình song song BC đi qua M và nhận (1;-1) là 1 vtcp có dạng:

\(\left\{{}\begin{matrix}x=-\dfrac{3}{2}+t\\y=\dfrac{7}{2}-t\end{matrix}\right.\)

9 tháng 3 2018

Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

+ Lập phương trình đường thẳng AB:

Đường thẳng AB nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ AB nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà A(1; 4) thuộc AB

⇒ PT đường thẳng AB: 5(x- 1) + 2(y – 4) = 0 hay 5x + 2y – 13 = 0.

+ Lập phương trình đường thẳng BC:

Đường thẳng BC nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ BC nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà B(3; –1) thuộc BC

⇒ Phương trình đường thẳng BC: 1(x - 3) – 1(y + 1) = 0 hay x – y – 4 = 0.

+ Lập phương trình đường thẳng CA:

Đường thẳng CA nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp ⇒ CA nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà C(6; 2) thuộc CA

⇒ Phương trình đường thẳng AC: 2(x – 6) + 5(y - 2) = 0 hay 2x + 5y – 22 = 0.

b) + AH là đường cao của tam giác ABC ⇒ AH ⊥ BC

⇒ Đường thẳng AH nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vec tơ pháp tuyến

Mà A(1; 4) thuộc AH

⇒ Phương trình đường thẳng AH: 1(x - 1) + 1(y - 4) = 0 hay x + y – 5 = 0.

+ Trung điểm M của BC có tọa độ Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 hay Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10

Đường thẳng AM nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtcp

⇒ AM nhận Giải bài 3 trang 80 SGK hình học 10 | Giải toán lớp 10 là 1 vtpt

Mà A(1; 4) thuộc AM

⇒ Phương trình đường thẳng AM: 1(x - 1) + 1(y – 4) = 0 hay x + y – 5 = 0.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a)  Phương trình đường thẳng AB đi qua 2 điểm A và B là: \(\frac{{x - 1}}{{ - 1 - 1}} = \frac{{y - 3}}{{ - 1 - 3}} \Leftrightarrow \frac{{x - 1}}{{ - 2}} = \frac{{y - 3}}{{ - 4}} \Leftrightarrow 2x - y + 1 = 0\)

 Phương trình đường thẳng AC đi qua 2 điểm A và C là: \(\frac{{x - 1}}{{5 - 1}} = \frac{{y - 3}}{{ - 3 - 3}} \Leftrightarrow \frac{{x - 1}}{4} = \frac{{y - 3}}{{ - 6}} \Leftrightarrow 3x + 2y - 9 = 0\)

 Phương trình đường thẳng BC đi qua 2 điểm B và C là:

\(\frac{{x + 1}}{{5 + 1}} = \frac{{y + 1}}{{ - 3 + 1}} \Leftrightarrow \frac{{x + 1}}{6} = \frac{{y + 1}}{{ - 2}} \Leftrightarrow x + 3y + 4 = 0\)

b)  Gọi d là đường trung trực của cạnh AB.

 Lấy N là trung điểm của AB, suy ra \(N\left( {0;1} \right)\).

 Do \(d \bot AB\) nên ta có vecto pháp tuyến của d là: \(\overrightarrow {{n_d}}  = \left( {1;2} \right)\)

 Vậy phương trình đường thẳng d đi qua N có vecto pháp tuyến \(\overrightarrow {{n_d}}  = \left( {1;2} \right)\) là:

\(1\left( {x - 0} \right) + 2\left( {y - 1} \right) = 0 \Leftrightarrow x + 2y - 2 = 0\)

c)  Do AH vuông góc với BC nên vecto pháp tuyến của AH là \(\overrightarrow {{n_{AH}}}  = \left( {3; - 1} \right)\)

 Vậy phương trình đường cao AH đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AH}}}  = \left( {3; - 1} \right)\)là: \(3\left( {x - 1} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow 3x - y = 0\)

 Do M là trung điểm BC nên \(M\left( {2; - 2} \right)\). Vậy ta có: \(\overrightarrow {AM}  = \left( {1; - 5} \right) \Rightarrow \overrightarrow {{n_{AM}}}  = \left( {5;1} \right)\)

 Phương trình đường trung tuyến AM đi qua điểm A có vecto pháp tuyến \(\overrightarrow {{n_{AM}}}  = \left( {5;1} \right)\) là:

\(5\left( {x - 1} \right) + 1\left( {y - 3} \right) = 0 \Leftrightarrow 5x + y - 8 = 0\)

23 tháng 9 2017

A. ten

a: (d): 2x-y+3=0

=>y=2x+3

Vì (d') vuông góc với (d) nên 2a=-1

=>a=-1/2

Vậy: (d'): y=-1/2x+b

Thay x=3 và y=1 vào (d'), ta được:

b-3/2=1

hay b=5/2

Vậy: (d'): y=-1/2x+5/2

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)