Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi D là trung điểm của CK
Xét ΔBKC có
M là trung điểm của BC
D là trung điểm của CK
Do đó: MD là đường trung bình
=>MD//BK
hay IK//MD
Xét ΔAMD có
I là trung điểm của AM
IK//MD
DO đó:K là trung điểm của AD
=>AK=DK=DC
=>AK=AC/3=3
qua C kẻ đường thẳng song song với BI cắt AM tại N. xét tam giác MNC có BI song song với NC nên MI/MN=BM/MC . Do đó MN=MI=AI nên AI/AN=1/3. Mà AI/AN=AK/AC ( IK song song với NC) suy ra AK/AC=1/3 => AK/KC=1/2
kẻ ME song song BK
ta có : MB = MC
suy ra ME là đường trung bình tam giác BKC
suy ra ME song song BK , EC = EK (1)
lại có ME SONG SONG IK , AI = IM
suy ra IK là đường trung bình tam giác AME
suy ra AK =KE (2)
từ (1) và (2) suy ra EC=EK=AK
suy ra AK = 1\2 KC
Trên tia đối của tia ME vẽ điểm H sao cho ME = MH.
Xét tam giác AME, có:
* I là trung điểm của AM (gt)
* ID // ME ( BD // ME)
=> ID là đường trung bình của tam giác AME
=> ID = 1/2 ME (1)
Xét tam giác MEC và tam giác MHB, có:
* ME = MH (theo cách vẽ)
* góc EMC = góc HMB (đối đỉnh)
* CM = BM (AM là trung tuyến)
=> tam giác MEC = tam giác MHB (c.g.c)
=> góc ECM = góc HBM (yếu tố tương ứng)
Mà góc ECM và góc HBM ở vị trí so le trong
Nên BH // AC
Xét tam giác BHE và tam giác EDB, có:
* góc HBE = góc DEB ( BH // AC ; so le trong)
* BE là cạnh chung
* góc HEB = góc DBE ( BD // HE ; so le trong)
=> tam giác BHE = tam giác EDB (g.c.g)
=> BD = HE (yếu tố tương ứng)
Ta có: HE = BD (cmt)
MH = ME (theo cách vẽ)
Mà HE = MH + ME
Nên BD = 2ME
18 = 2ME
ME = 18 : 2
ME = 9 (cm) (2)
Từ (1) và (2) => ID = ME : 2 = 9 : 2 = 4.5 (cm)
A B C M K I N
Qua M kẻ đường thằng MN song song với IK cắt AC tại N
Dễ thấy MN là đường trung bình của tam giác BKC nên KN = NC (1)
Mặt khác, ta cũng chứng minh được IK là đường trung bình của tam giác AMN
=> AK = KN (2)
Từ (1) và (2) suy ra AK = KN = NC
Mà AC = AK + KN + NC = 3AK = 9 cm => AK = 3 cm
3cm