![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
từ AB^2 +AC ^2 \(\ge\) 2 AB.AC
<=> \(BC^2\ge2AB.AC\)
<=> \(2BC^2-BC^2\ge2AB.AC\)
<=> 2BC^2\(\ge\) \(BC^2+2AB.AC\)
<=>\(2BC^2\ge AB^2+AC^2+2AB.AC\)
<=>HAY (ab+ac)^2 \(\le\)2bc ^2 thế AC =b ; AB=c; BC =a vào ta có đpcm
\(\Delta ABC\)vuông tại A có : AB2 + AC2 = BC2 \(\Rightarrow b^2+c^2=a^2\).Ta có :
\(\left(b-c\right)^2\ge0\Leftrightarrow b^2-2bc+c^2\ge0\Leftrightarrow2bc\le b^2+c^2\)
\(\Leftrightarrow b^2+2bc+c^2\le2\left(b^2+c^2\right)\Leftrightarrow\left(b+c\right)^2\le2a^2\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này sin sin, cos có gì đó mà mình đang tịt ngòi, chưa ra........ :D, giải theo cách này vậy........
Gọi đường cao xuất phát từ đỉnh A đến BC là h, theo hệ thức lượng trong tam giác vuông, ta có:
\(\dfrac{1}{h^2}=\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Áp dụng BĐT Cauchy vào 2 số không âm \(\dfrac{1}{b^2}\) và \(\dfrac{1}{c^2}\), ta có:
\(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge2\sqrt{\dfrac{1}{b^2c^2}}=\dfrac{2}{bc}\)
\(\Rightarrow\)\(\dfrac{1}{h^2}\ge\dfrac{2}{bc}\)
\(\Leftrightarrow1\ge\dfrac{2h^2}{bc}\)
\(\Leftrightarrow bc\ge2h^2\)
Mà theo hệ thức lượng trong tam giác vuông thì \(bc=ah\)
\(\Rightarrow ah\ge2h^2\)
\(\Leftrightarrow a\ge2h\)
\(\Leftrightarrow a^2\ge2ah\)
\(\Leftrightarrow a^2\ge2bc\)
\(\Leftrightarrow a^2+b^2+c^2\ge b^2+c^2+2bc\)
\(\Leftrightarrow a^2+a^2\ge\left(b+c\right)^2\) ( Định lí Py-ta-go)
\(\Leftrightarrow2a^2\ge\left(b+c\right)^2\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a. Trong một tam giác có ít nhất hai góc nhọn, giả sử là B và C. Kẻ AH vuông góc với BC, thì H nằm giữa B,C. Ta đặt \(h=AH,x=HC\) . Theo định lý Pi-ta-go cho tam giác AHC ta có \(h^2+x^2=b^2.\) (1)
Mặt khác \(BH=a-x\to\left(a-x\right)^2+h^2=AH^2+BH^2=AB^2=c^2\to\left(a-x\right)^2+h^2=c^2.\) (2)
Trừ (1),(2) cho nhau ta được \(x^2-\left(a-x\right)^2=b^2-c^2\to x=\frac{b^2-c^2+a^2}{2a}.\)
Vì vậy \(h^2=b^2-x^2=b^2-\left(\frac{a^2+b^2-c^2}{2a}\right)^2=\frac{\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)}{4a^2}\)
Thành thử, \(S_{\Delta ABC}=\frac{1}{2}\cdot AH\cdot BC=\frac{1}{2}\cdot a\cdot\sqrt{\frac{\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)}{4a^2}}\)
\(\to S_{\Delta ABC}=\frac{1}{4}\cdot\sqrt{\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}.\)
Câu b. (Ở đây thiếu giải thích \(m_a\) là độ dài trung tuyến kẻ từ A.
Không mất tính tổng quát giả sử \(AB\le AC\), gọi M là trung điểm BC, thì H nằm giữa B,M. Theo trên ta có
\(HM=HC-CM=x-\frac{a}{2}=\frac{b^2-c^2+a^2}{2a}-\frac{a}{2}=\frac{b^2-c^2}{2a}.\)
Vậy theo định lý Pitago ta có \(AM^2=AH^2+HM^2=h^2+AM^2=b^2-\left(\frac{a^2+b^2-c^2}{2a}\right)^2+\left(\frac{b^2-c^2}{2a}\right)^2=\)
\(\to AM^2=b^2-\frac{a^4+2a^2\left(b^2-c^2\right)}{4a^2}=b^2-\frac{a^2+2b^2-2c^2}{4}=\frac{2b^2+2c^2-a^2}{4}.\) (ĐPCM)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình
a) Xét tứ giác AEHF có: ^EAF=90(gt)
^AFH=90(gt)
^AEF=90(gt)
=> Tứ giac AEHF là hình chữ nhật
Gọi O là giao điểm của AH và EF
Vì AEHF là hcn(cmt)
=> OE=OA
=>\(\Delta\)OAE cân tại O
=>^OAE=^OEA
Xét \(\Delta\)ABH vuông tại H(gt)
=>^B+^OAE=90 (1)
Xét \(\Delta\)ABC vuông tại A(gt)
=>^B+^C=90 (2)
Từ (1) và (2) suy ra: ^OAE=^C
Mà ^OAE=^OEA(cmt)
=>^AEF=^ACB
Xét \(\Delta\)AEF và \(\Delta\)ACB có:
^EAF=^CAB=90(gt)
^AEF=ACB(cmt)
=>\(\Delta\)AEF~\(\Delta\)ACB(g.g)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
=>AE.AB=AF.AC
Từ phần b bạn tự làm nhé (^.^)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) a) Từ C dựng đường cao CF
Ta có: \(\sin A=\frac{CF}{b};\sin B=\frac{CF}{a}\)\(\Rightarrow\)\(\frac{\sin A}{\sin B}=\frac{\frac{CF}{b}}{\frac{CF}{a}}=\frac{a}{b}\)\(\Leftrightarrow\)\(\frac{a}{\sin A}=\frac{b}{\sin B}\) (1)
Từ A dựng đường cao AH
Có: \(\sin B=\frac{AH}{c};\sin C=\frac{AH}{b}\)\(\Rightarrow\)\(\frac{\sin B}{\sin C}=\frac{\frac{AH}{c}}{\frac{AH}{b}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\frac{b}{\sin B}=\frac{c}{\sin C}\) (2)
(1), (2) => đpcm
b) từ a) ta có: \(\hept{\begin{cases}\sin A=\frac{CF}{b}\\\cos A=\frac{AF}{b}\end{cases}\Leftrightarrow\hept{\begin{cases}CF=b.\sin A\\AF=b.\cos A\end{cases}}}\)
Có: \(BF=c-AF=c-b.\cos A\)
Py-ta-go:
\(a^2=BF^2+CF^2=\left(c-b.\cos A\right)^2+\left(b.\sin A\right)^2=c^2+b^2.\cos^2A+b^2.\sin^2A-2bc.\cos A\)
\(=b^2\left(\sin^2A+\cos^2A\right)+c^2-2bc.\cos A=b^2+c^2-2bc.\cos A\) (đpcm)
c) Có: \(\hept{\begin{cases}\cos A=\frac{AF}{b}\\\cos B=\frac{BF}{a}\end{cases}\Rightarrow b.\cos A+a.\cos B=b.\frac{AF}{b}+a.\frac{BF}{a}=AF+BF=c}\)
bài 2 mk có làm r bn ib mk gửi link nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
nhầm lẫn 1 số chỗ nên giờ mới ra,mong bn thông cảm
ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)
đặt \(P=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)
áp dụng bunhia ta có:
\(P\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2=1\)
\(\Rightarrow P\ge\frac{1}{a+b+c}\)
fan Cậu Bé Ngu Ngơ à
choi truy kick a