Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔABM và ΔNCM có
MA=MN
\(\widehat{AMB}=\widehat{NMC}\)
MB=MC
Do đó: ΔABM=ΔNCM
b: Xét tứ giác ABNC có
M là trung điểm của AN
M là trung điểm của BC
Do đó: ABNC là hình bình hành
Suy ra: AB//NC và AB=NC
c: Ta có: ABNClà hình bình hành
nên AC=BN và AC//BN
Cậu tự hình nhé
a.\(\Delta AMC\) và \(\Delta NMB\) có:
AM= NM (gt)
\(\widehat{AMC}\) =\(\widehat{NMB}\) (2 góc đối đỉnh)
CM= MB (gt)
\(\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\)
\(\Rightarrow AC=BN\) (đpcm)
ΔAMB và ΔNMC có:
AM= NM (gt)
\(\widehat{AMB}\)= \(\widehat{NMC}\) (2 góc đối đỉnh)
CM= BM (gt)
⇒ΔAMB=ΔNMC(c.g.c)
⇒\(\widehat{BAM}\)= \(\widehat{CNM}\) (hai góc tương ứng)
Hai góc đồng vị \(\widehat{BAM}\) và \(\widehat{CNM}\) bằng nhau nên AB//NC (đpcm)
a) Vì M là trung điểm BC suy ra BM =CM(1)
Xét tam giác BMN và tam giác CMA có :
BM=CM(1)
Góc BMN = Góc CMA(gt)
MA=MN(gt)
Suy ra tam giác BMN = tam giác CMA (đfcm)
Bài rất hay !
A B C M E C
a) Xét tam giác ABM và tam giác ANM có
\(\widehat{BAM}\) = \(\widehat{NAM}\) (Vì AM là phân giác góc A)
AB = AN (gt)
Chung AM
=> Tam giác ABM = Tam giác ANM (c.g.c)
b) Ta có \(\widehat{ABM}\)+\(\widehat{EBE}\) = 180 độ
\(\widehat{ANM}\) + \(\widehat{CNM}\) = 180 độ
mà \(\widehat{ABM}\)=\(\widehat{ANM}\)(Vì tam giác ABM = Tam giác ANM)
=> \(\widehat{EBE}\)= \(\widehat{CNM}\)
Lại có BM = NM (Vì tam giác ABM = Tam giác ANM)
Xét tam giác BME và Tam giác NMC có
\(\widehat{EBE}\) =\(\widehat{CNM}\)
BM = NM
\(\widehat{BME}\) = \(\widehat{NMC}\) (Đối đỉnh)
=> Tam giác BME = Tam giác NMC (c.g.c)
=> BE = NC (2 cạnh tương ứng)
c) Xét tam giác ABN
Có AB = AN (gt) => Tam giác ABN cân
=> Đường phân giác cũng là đường cao => AM vuông góc với BN (1)
Ta có BE = NC (cmt)
AB = AN
mà AE = AB+BE, AC = AN + CN
=> AE = AC
=> Tam giác AEC cân
=> đường phân giác cũng là đường cao => AM Vuông góc với EC (2)
Từ (1), (2) => BN // EC (Cùng vuông góc với AM) - đpcm
a/ - AB = AC ( gt )
ABM = ACM vì { - AM chung
(c.c.c) - MB = MC ( m là trung điểm )
b/ AB // DC k phải AB // BC
T/g ABM = t/g DCM ( c.g.c)
AM = DM ( gt )
Góc AMB = DMC ( đđ )
BM = CM ( gt )
Có ABM = DCM ( t/g ABM = t/g DCM )
Lại ở vị trí slt
=> AB // DC
c/
AB = AC ( gt )
=> ABC cân tại A
Có AM là trung tuyến ( m là trug điểm )
=> AM là đường cao ABC
=> AM vuông góc BC
Xét tam giác AMC và tam giác DMB có:
AM =MD (gt )
BM =MC (gt )
goc MAC=goc MDB(so le trong)
=>Tam giac AMC=tam giac DMB(c.g.c)
Vì góc MAD và góc MDB là hai góc so le trong tạo bởi đường thẳng AD cắt AC và BD
=>AC //BD
Xin lỗi, chụp bị ngang