K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

a, Vì \(\left\{{}\begin{matrix}\widehat{BAH}=\widehat{CAH}\\\widehat{AHB}=\widehat{AHC}=90^0\\AH.chung\end{matrix}\right.\) nên \(\Delta AHB=\Delta AHC\left(g.c.g\right)\)

Do đó \(AB=AC;\widehat{B}=\widehat{C}\)

b, Vì \(\Delta AHB=\Delta AHC\) nên \(BH=HC\) hay H là trung điểm BC

Mà AH vuông góc BC tại H nên AH là trung trực BC

c, Vì \(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\\\widehat{BEH}=\widehat{CFH}=90^0\\BH=HC\end{matrix}\right.\) nên \(\Delta BHE=\Delta CHF\left(ch-gn\right)\)

2 tháng 11 2021

phần D nữa bạn

 

27 tháng 6 2020

a, xét tg ABE và tg HBE có BE chung

^EAB = ^EHB = 90 

^ABE = ^HBE do BE là pg của ^ABC (gt)

=> tg ABE = tg HBE (ch-gn)

27 tháng 6 2020

Cảm ơn bạn