K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

DO đó: ΔABM=ΔDCM

=>AB=CD
b: ΔABM=ΔDCM

nên góc ABM=góc DCM

=>AB//CD

c: Xét ΔBEC có

M là trung điểm của BC

MA//EC

Do đó; A là trung điểm của BE

d: Xét tứ giác AECD có

AE//CD

AE=CD
Do đó; AECD là hình bình hành

=>AC cắt ED tại trung điểm của mỗi đường

=>E,I,D thẳng hàng

9 tháng 12 2018

a) CM Tam giac ABM = tam giac CDM

Xét tam giac ABM và Tam giác CDM, ta có:

MA = MC (gt)

MB=MD (gt)

Góc AMB = góc DMC (đđ)

Suy ra Tam giác ABM = Tam giác CDM

b) CM AB song song CD

Ta có: Góc MBA =góc MCD ( cmt)

Mà 2 góc này ở vị trí so le trong, nên suy ra AB//CD

c) CM E là trung điểm AC

Ta có: Tứ giác ABCD có:

M là trung điểm AC gt)

M là trung điểm BD (gt)

Mà AC cắt BD tại M

Suy ra: Tứ giac ABCD là hình bình hành

Ta lại có: MN là trung điểm BC , MN //AB//CD.

Do đó NE cũng //AB//CD , và E cũng là trung điểm của AD.

Bài 1: Cho đa thức P(x) = \(x^{2014}+2013x+2012\) có nghiệm dương không? Vì sao? Bài 2: Cho a = \(\frac{2.9.8+3.12.10+4.15.12+...+98.297.200}{2.3.4+3.4.5+4.5.6+...+98.99.100}\). Hỏi a có phải là nghiệm của đa thức P(x) = \(x^2-12x+35\) không? Vì sao? Bài 3: Cho ΔABC cân tại A. Vẽ AH⊥BC tại H. a) Cho biết AB=10cm, AH=8cm. Tính độ dài đoạn thẳng BH b) CMR: ΔHAB=ΔHAC c) Gọi D là điểm nằm trên đoạn thẳng AH. Trên tia đối...
Đọc tiếp

Bài 1: Cho đa thức P(x) = \(x^{2014}+2013x+2012\) có nghiệm dương không? Vì sao?

Bài 2: Cho a = \(\frac{2.9.8+3.12.10+4.15.12+...+98.297.200}{2.3.4+3.4.5+4.5.6+...+98.99.100}\). Hỏi a có phải là nghiệm của đa thức P(x) = \(x^2-12x+35\) không? Vì sao?

Bài 3: Cho ΔABC cân tại A. Vẽ AH⊥BC tại H.
a) Cho biết AB=10cm, AH=8cm. Tính độ dài đoạn thẳng BH

b) CMR: ΔHAB=ΔHAC

c) Gọi D là điểm nằm trên đoạn thẳng AH. Trên tia đối của tia DB lấy điểm E sao cho DE=DB. CMR: AD+DE>AC

d) Gọi K là giao điểm trên đoạn thẳng CD sao cho CK=\(\frac{2}{3}CD\). CMR: 3 điểm H,K,I thẳng hàng.
Bài 4: Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC=10cm, AC=6cm. Tính độ dài đoạn thẳng AB, BM

b) Trên tia đối của tia MC lấy D sao MD=MC. CMR: ΔMAC=ΔMAB và AC=BD
c) CMR: AC+BC > 2CM

d) Gọi K là giao điểm trên đoạn thẳng AM sao cho \(AK=\frac{2}{3}AM\). Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. CMR: CD=3ID

Bài 5: Cho ΔABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AD=AB

a) Cho biết AC=4cm, BC=5cm. Tính độ dài AB,BD. So sánh các góc của ΔABC

b) CMR: ΔCBD cân

c) Gọi M là trung điểm của đoạn thẳng CD. Đường thẳng qua D và song song với BC cắt đường thẳng BM tại E

d) Gọi K là giao điểm của AE và DM. CMR: BC=6KM

5
12 tháng 6 2020

bạn giải giúp mình bài 1 nha

12 tháng 6 2020

xem đc chưa

2 tháng 12 2017

HELP !!!!

14 tháng 12 2017

2

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0