Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề hơi sai chỉnh lại nha mọi ngừi Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 20 độ; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC . có:
A. BD = 20/7 cm; CD = 15/7cm.
B. BD = 15/7 cm; CD = 20/7 cm
C. BD = 1,5 cm; CD = 2,5 cm
D. BD = 2,5 cm; CD = 1,5 cm
Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:
A. DA = 8/3 ; DC = 10/3
B. DA = 10/3; DC = 8/3
C. DA = 4; DC = 2
D. DA = 2,5; DC = 2,5
Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:
A. 1/AB + 1/AC = 2/AD
B. 1/AD + 1/AC = 1/AB
C. 1/ AB + 1/AC = 1/AD
D. 1/AB + 1/AC = 1
Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :
A. x = 14
B. x = 12
C. x = 8
D. Một kết quả khác
Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :
A.10
B.10_5/7
C.14
D.14_2/7
Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:
A. 1/4
B. 1/2
C. 3/4
D.1/3
Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:
A. 3,5
B.5
C. 40/7
D.6
Bài 8:
Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:
A. ME//AC
B. góc AEF = 50°
C. Góc FMC = 50°
D. MB/MA= FA/FC
Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc:
A. DA = 3cm
B. DB = 5cm
C. AC = 6cm
D. Cả 3 đều đúng
Tui nghĩ đề bị thiếu rồi. Phải là \(\Delta ABC\)có \(AB=AC\) mới đúng.
A B C D H
Trên nửa m.phẳng bờ \(BC\)chứ \(A\) vẽ tia \(Bx\)sao cho \(\widehat{CBx}=20^0\)
Gọi \(D\)là giao điểm của \(Bx\)và \(AC\), \(H\)là hình chiếu của \(A\)trên \(Bx\)
Theo đề ta có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\) và \(\widehat{A}=20^0\Rightarrow\widehat{ABC}=\widehat{ACB}=80^0\)
Lại có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}=80^0\)
Và: \(\widehat{CBx}=20^0\Rightarrow\widehat{ABH}=60^0\Rightarrow BH=\frac{b}{2};AH=\frac{\sqrt{3}b}{2}\)
\(\Rightarrow\Delta CBD\)cân tại \(B\Rightarrow BD=BC=a\)
Lại có: \(\Delta CBD~\Delta CAB\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{CD}{BC}\Rightarrow CD=\frac{a^2}{b}\)
Ta có: \(AD=AC-CD=b-\frac{a^2}{b};DH=BH-BD=\frac{b}{2}-a\)
Áp dụng định lí Pitago trong \(\Delta ADH\)vuông tại \(H\) có:
\(\Rightarrow AD^2=AH^2+DH^2\)
Vì vậy: \(\left(b-\frac{a^2}{b}\right)^2=\left(\frac{\sqrt{3}b}{2}\right)^2+\left(\frac{b}{2}-a\right)^2\)
\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=\frac{3b^2}{4}+\frac{b^2}{4}-ab+a^2\)
\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=b^2-ab+a^2\)
\(\Leftrightarrow\frac{a^4}{b^2}+ab=3a^2\)
\(\Leftrightarrow a^3+b^3=3ab^2\left(đpcm\right)\)
ồ xin lỗi, đánh thiếu đề
THANKS!