Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAMB và ΔAMC có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔAMB=ΔAMC
b: Xet ΔMDB và ΔMDC có
MB=MC
MD chung
DB=DC
=>ΔMBD=ΔMCD
A M B C
a. Xét \(\Delta AMB\)và \(\Delta AMC\)
có \(\hept{\begin{cases}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AMchung\end{cases}}\)(do AD là phân giác)\(\Rightarrow\Delta AMB=\Delta AMC\left(c-g-c\right)\)
\(\Rightarrow MB=MC\)
b. Xét \(\Delta MBD\)và \(\Delta MCD\)
có \(\hept{\begin{cases}BD=CD\\MDchung\\MB=MC\end{cases}}\)\(\Rightarrow\Delta MBD=\Delta MCD\left(c-c-c\right)\)
vì tam giác abd = tam giác bdm
=>ad=md(hai cạnh tương ứng )
vì a^1=m^1
=>a^2=M^2
xét hai tam giác adp và dmc có
a^2=m^2(cmt)
ad=md(cmt)
Adp^=mdc^(đối đỉnh)
do đó tam giác adp =tam giac mdc(g.c.g)
vì tam giác adp =Tam giác mdc
=>dp = dc(hai cạnh tương ứng )
=>tam giác pdc cân
ABCMD1342
a, Xét \(\Delta AMB\)và \(\Delta CMD\)có :
\(AM=MC\left(gt\right)\)
\(MB=MD\left(gt\right)\)
\(\widehat{M_1}=\widehat{M_3}\)( đối đỉnh )
\(\Rightarrow\Delta AMB=\Delta CMD\left(c.g.c\right)\)
b, Từ câu a, \(\Delta AMB=\Delta CMD\)
\(\Rightarrow\widehat{A_1}=\widehat{C_2}\)( 2 góc tương ứng )
Đt AC bị hai đường thẳng AB và CD cắt tạo thành \(\widehat{A_1}=\widehat{C_2}\)( 2 góc sl trong ) bằng nhau
=> AB // CD ( đpcm )
c, Xét \(\Delta DMA\)và \(\Delta BMC\)có :
\(MA=MC\left(gt\right)\)
\(MB=MD\left(gt\right)\)
\(\widehat{M_2}=\widehat{M_4}\)
\(\Rightarrow\Delta BMC=\Delta DMA\)
= > AD = BC
d, Từ câu b, \(\Delta DMA=\Delta BMC\)
\(\Rightarrow\widehat{A_2}=\widehat{C_1}\)( 2 góc t/ư )
Đt CA bị 2 đường thẳng AD và BC cắt tạo thành \(\widehat{A_2}=\widehat{C_1}\)( 2 góc sl trong ) bằng nhau
= > AD // BC ( đpcm )
xem lại đè bài đi hình như sai rồi thì phải. chỗ phân giác góc A cắt BC tại C ấy
Sửa câu b: Từ M kẻ ME
Bg
a/ Xét hai tam giác AMB và AMC có:
AB = AC (gt)
BM = MC (vì M là trung điểm của BC)
AM là cạnh chung
Nên \(\Delta AMB=\Delta AMC\)(c.c.c)
Vậy \(\Delta AMB=\Delta AMC\)
b/ Xét hai tam giác vuông AME và AMF có:
\(\widehat{EAM}=\widehat{FAM}\)(vì \(\Delta AMB=\Delta AMC\))
AM là cạnh chung
Nên \(\Delta AME=\Delta AMF\)(g.c.g)
Do đó AE = AF (hai cạnh tương ứng)
Vậy AE = AF
c và d hơi dài. Đợi một thời gian :((
a, Xét tam giác ABD và tam giác ACD
AB = AC ; BD = DC ; AD_chung
Vậy tam giác ABD = tam giác ACD (c.c.c)
b, Xét tam giác ABC cân tại A, có D là trung điểm BC
=> AD là đường trung tuyến đồng thời là đường cao
đồng thời là đường pg
=> AD vuông BC
c, Vì D là trung điểm BC => BD = CD = BC/2 = 6 cm
Theo định lí Pytago tam giác ADB vuông tại D
\(AD=\sqrt{AB^2-BD^2}=8cm\)( do AB = AC, tam giác ABC cân tại A)
d, Xét tam giác AED và tam giác AFD có
AD _ chung
^EAD = ^FAD ( do AD là đường pg)
Vậy tam giác AED = tam giác AFD (ch-gn)
=> ED = FD (2 cạnh tương ứng)
Xét tam giác DEF có ED = FD (cmt)
Vậy tam giác DEF cân tại D
a) Xét tam giác AMB và tam giác AMC có:
+ AB = AC (gt).
+ AM chung.
+ ^BAM = ^CAM (AM là phân giác ^BAC).
=> Tam giác AMB = Tam giác AMC (c - g - c).
b) Xét tam giác ABC cân tại A có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AD là phân giác ^BAC (gt).
=> AD là đường trung tuyến (Tính chất các đường trong tam giác cân).
=> D là trung điểm của BC.
Xét tam giác MBD và tam giác MCD có:
+ MB = MC (do tam giác AMB = tam giác AMC).
+ MD chung.
+ BD = CD (do D là trung điểm của BC).
=> Tam giác MBD = Tam giác MCD (c - c - c).
A B C M a. Xét ΔAMBΔAMBvà ΔAMCΔAMC
có ⎨⎪⎩AB=ACˆBAM=ˆCAMAMchung\hept{AB=ACBAM^=CAM^AMchung(do AD là phân giác)⇒ΔAMB=ΔAMC(c−g−c)⇒ΔAMB=ΔAMC(c−g−c)
⇒MB=MC⇒MB=MC
b. Xét ΔMBDΔMBDvà ΔMCDΔMCD
có
⎧⎨⎩BD=CDMDchungMB=MC\hept{BD=CDMDchungMB=MC⇒ΔMBD=ΔMCD(c−c−c)