K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021

A B C D E N

26 tháng 3 2021

a) Xét \(\Delta BAC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{BA}{BC}=\frac{AD}{CD}\)(tính chất).

\(\Rightarrow\frac{BA}{BC+BA}=\frac{AD}{CD+AD}=\frac{AD}{AC}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{6}{10+6}=\frac{AD}{8}\)(thay số).

\(\Rightarrow\frac{6}{16}=\frac{AD}{8}\)

\(\Rightarrow AD=\frac{6}{16}.8=\frac{3}{8}.8=3\left(cm\right)\)

Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)

Vậy \(AD=3cm,CD=5cm\)

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

28 tháng 3 2021

e) \(AH\perp BC\)(giả thiết).

\(\Rightarrow\Delta HAB\)vuông tại H.

\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Vì \(\Delta ABC\)vuông tại A (giả thiết).

\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)

\(\Rightarrow\Delta ADB\)vuông tại A.

\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))

\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)

Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)

\(\Rightarrow9+S_{BCD}=24\)(thay số).

\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)

Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)

28 tháng 3 2021

A B C H E D I

Bài 1: Cho tam giác ABC vuông tại B , đường phân giác AD ( D thuộc BC ) . Kẻ CK vuông góc với đường thẳng AD tại K a) Chứng minh : Tam giác BDA ~ Tam giác KDC b) Chúng minh : Tam giác DBK ~ Tam giác DAC c) Gọi I là giao điểm AB và CK . Chứng minh : AB . AI + DC . BC = AC2 Bài 2: Cho tam giác ABC có AH là đường cao ( H thuộc BC ) . Gọi D và E lần lượt là hình chiếu của H trên AB và AC . Chứng minh : a) Tam giác ABH ~...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại B , đường phân giác AD ( D thuộc BC ) . Kẻ CK vuông góc với đường thẳng AD tại K 

a) Chứng minh : Tam giác BDA ~ Tam giác KDC 

b) Chúng minh : Tam giác DBK ~ Tam giác DAC 

c) Gọi I là giao điểm AB và CK . Chứng minh : AB . AI + DC . BC = AC2 

Bài 2: Cho tam giác ABC có AH là đường cao ( H thuộc BC ) . Gọi D và E lần lượt là hình chiếu của H trên AB và AC . Chứng minh : 

a) Tam giác ABH ~ Tam giác ADH 

b) HE2 = AE . EC 

c) Gọi M là giao điểm của BE và CD . Chứng minh tam giác DBM ~ Tam giác ECM 

Bài 3: Cho tam giác ABC vuông tại A . Đường cao AH 

a) Chứng minh : Tam giác ABC ~ Tam giác HBA 

b) Tính độ dài BC và AH ,biết  AB = 6 cm , AC = 8 cm 

c) Phân giác góc ACB cắt AH tại E , cắt AB tại D . Tính tỉ số diện tích của hai tam giác ACD và HCE 

1
5 tháng 5 2021

Bài 1 :

a, Xét tam giác BDA và tam giác KDC có:     

 Góc BDA= Góc KDC(đối đỉnh)

 Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

b, 

Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)

Xét tam giác DBK và tam giác DAC có:   

  Góc BDK= Góc DAC(đối đỉnh)

\(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

Bài 2 :

a) Xét tam giác ABH và tam giác AHD có:

\(\widehat{A}chung\)

\(\widehat{AHB}=\widehat{ADH}=90^o\)

 tam giác ABH đồng dạng với tam giác AHD (g-g)

b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)

⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)

Tam giác AEH đồng dạng với tam giác HEC 

\(\widehat{ACH}=\widehat{AHE}\) (CM trên)

\(\widehat{AEH}=\widehat{HEC}\) (= 900)

\(\frac{AE}{HE}=\frac{EH}{EC}\)\(AE\cdot EC=EH\cdot EH=EH^2\)

c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:

\(\widehat{A}\) chung

\(\widehat{ADC}=\widehat{AEB}=90^O\)

 \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)

Xét tam giác DBM và tam giác ECM có:

\(\widehat{ACD}=\widehat{ABE}\) (CM trên)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

 tam giác DBM đồng dạng với tam giác ECM (g-g)

 Bài 3 :

Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu

1 tháng 4 2020

Sửa đề câu a thành tính độ dài AE, CE

a, Vì BE là phân giác của ABC 

\(\Rightarrow\frac{EC}{BC}=\frac{AE}{AB}\)\(\Rightarrow\frac{EC}{4}=\frac{AE}{7}=\frac{EC+AE}{4+7}=\frac{AC}{11}=\frac{6}{11}\)(Áp dụng tính chất dãy tỉ số bằng nhau)

Do đó: \(\frac{EC}{4}=\frac{6}{11}\)\(\Rightarrow EC=\frac{4.6}{11}=\frac{24}{11}\)  ; \(\frac{AE}{7}=\frac{6}{11}\)\(\Rightarrow AE=\frac{6.7}{11}=\frac{42}{11}\)

b, Xét △ABH vuông tại H và △CBF vuông tại F

Có: ABH = CBF (gt)

=> △ABH ᔕ △CBF (g.g)

\(\Rightarrow\frac{AB}{CB}=\frac{BH}{BF}\)\(\Rightarrow AB.BF=BH.BC\)

c, Gọi DF ∩ BC = { K }  ;  CF ∩ AB = { I }  ; GE ∩ DF = { O }

Xét △BIC có BF vừa là đường cao vừa là đường phân giác

=> △BIC cân tại B 

=> BI = BC 

và IF = FC

mà AD = DC

=> DF là đường trung bình của △CAI

=> DF // AI và 2FD = AI   

=> DF // AB

=> DK // AB

Xét △ABC có: DK // AB và AD = DC (gt)

=> DK là đường trung bình của △ABC

=> K là trung điểm của BC

=> BK = KC 

Vì DF // AB (cmt)  

  • \(\Rightarrow\frac{BG}{GD}=\frac{BI}{DF}\)(định lý Thales) \(\Rightarrow\frac{BG}{GD}=\frac{2BI}{2DF}\)\(\Rightarrow\frac{BG}{GD}=\frac{2BI}{AI}\)  (1)
  • \(\Rightarrow\frac{AE}{DE}=\frac{AB}{DF}\) (Hệ quả định lý Thales)

Ta có: \(\frac{CE}{DE}=\frac{DC-DE}{DE}=\frac{DC}{DE}-1=\frac{AD}{DE}-1=\frac{AE-DE}{DE}-1=\frac{AE}{DE}-1-1=\frac{AB}{DF}-2\)

\(=\frac{AB}{DF}-2=\frac{2\left(AI+BI\right)}{2DF}-2=\frac{2AI+2BI}{AI}-2=\frac{2AI+2BI-2AI}{AI}=\frac{2BI}{AI}\)  (2)

Từ (1) và (2) \(\Rightarrow\frac{BG}{GD}=\frac{CE}{DE}\)\(\Rightarrow GE//BC\)

  • \(\Rightarrow\frac{GO}{KC}=\frac{OF}{FK}\)  (Hệ quả định lý Thales)
  • \(\Rightarrow\frac{OE}{BK}=\frac{OF}{FK}\)​ (Hệ quả định lý Thales)

\(\Rightarrow\frac{GO}{KC}=\frac{OE}{BK}\)

Mà KC = BK 

=> GO = OE 

=> O là trung điểm của GE

Mà GE ∩ DF = { O }

=> DF đi qua trung điểm của EG

30 tháng 4 2021

#muon roi ma sao con

A B C D F E G

a, Xét tam giác BEF và tam giác DEA ta có : 

^BEF = ^DEA ( đ.đ ) vì AD // BC ( ABCD là hình bình hành )

\(\frac{AE}{EF}=\frac{DE}{BE}\) do AD // BC ( theo định lí Ta lét ) (1) 

Vậy tam giác BEF ~ tam giác DEA ( c.g.c )

b, Xét tam giác EGD và tam giác EAB ta có : 

^GED = ^EAB ( đ.đ )

\(\frac{AE}{EG}=\frac{BE}{ED}\)AB // DG ( theo định lí Ta lét )  (2) 

Vậy tam giác EGD ~ tam giác EAB ( c.g.c )

\(\Rightarrow\frac{EG}{EA}=\frac{ED}{EB}\Rightarrow EG.EB=ED.EA\)( đpcm )

c, Từ (2) ta có : \(\frac{AE}{EG}=\frac{BE}{ED}\Rightarrow\frac{EG}{AE}=\frac{ED}{BE}\)( 3 ) 

Từ (1) ; (3) ta có : \(\frac{AE}{EF}=\frac{EG}{AE}=\frac{ED}{BE}\Rightarrow AE^2=EG.EF\)

30 tháng 4 2021

A B C D E F H 3 6

a, Xét tam giác AEB và tam giác AFC ta có 

^AEB = ^AEC = 900

^A _ chung 

Vậy tam giác AEB ~ tam giác AFC ( g.g )

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.AC=AB.AF\)