Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét t/g AHC và t/g DHC có:
AH = DH (gt)
góc AHC = góc DHC = 90 độ
HC chung
=> t/g AHC = t/g DHC (c.g.c) (đpcm)
b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82
=> AC = 8 (cm)
c, Xét t/g AHB và t/g DHE có:
AH = DH (gt)
góc AHB = góc DHE (đối đỉnh)
BH = EH (gt)
=> t/g AHB = t/g DHE (c.g.c) (đpcm)
=> góc HBA = góc DEH (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // DE
Mà AB _|_ AC
=> DE _|_ AC (đpcm)
d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)
Xét t/g AHB và t/g AHE có:
BH = BE (gt)
góc AHB = góc AHE = 90 độ
AH chung
=> t/g AHB = t/g AHE (c.g.c)
=> AB = AE (2 cạnh tương ứng) (2)
Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)
Từ (1),(2),(3) => AE + CD > BC (đpcm)
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
A B C H D E
a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)
Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2
=> AC2=64 (cm) => AC2=82 => AC=8 (cm).
b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD
=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)
c) Nối E với D.
Xét \(\Delta\)AHB và \(\Delta\)EHD:
HB=HD
^AHB=^EHD=900 => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)
HA=HE
=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED
Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)
Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC
=> AD \(⊥\)EC (đpcm)
A B C
a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A
BC2 = AB2 + AC2
102 = 62 + AC2
=> AC2 = 100 - 36 = 64
=> AC =8
B A C H E I D K
\(a)\)Xét \(\Delta ABH\) và \(\Delta KIH\) có:
\(HA=HK\left(gt\right)\)
\(\widehat{BHA}=\widehat{KHI}\left(đ^2\right)\)
\(HB=HI\left(gt\right)\)
\(\Rightarrow\Delta AHB=\Delta KIH\left(c.g.c\right)\)
\(b)\widehat{BAH}=\widehat{HKI}\left(\Delta AHB=\Delta KIH\right)\)
Mà hai góc ở vị trí so le trong
\(\Rightarrow AB//KI\)
\(c)AB\perp AC\)
\(AB//KI\)
\(\Rightarrow KI\perp AC\)
\(\Rightarrow IE\perp AC\)
\(\Rightarrow IK\equiv IE\)
\(\Rightarrow K,I,E\) thẳng hàng
\(d)\)Sai đề
a: Xét ΔABH vuông tại H và ΔKIH vuông tại H có
HA=HK
HB=HI
=>ΔABH=ΔKIH
b: ΔABH=ΔKIH
=>góc ABH=góc KIH
=>AB//IK
c: IK//AB
AB vuông góc AC
=>IK vuông góc AC
=>I,K,E thẳng hàng
d: Xét tứ giác ABKI có
H là trung điểm chung của AK và BI
AK vuông góc BI
=>ABKI là hình thoi
=>AB=AI=IK
=>IK=ID
=>góc IKD=góc IDK
a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)
BC = 10; AB = 8 (Gt)
=> AC^2 = 10^2 - 8^2
=> AC^2 = 36
=> AC = 6 do AC > 0
b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)
BM = MC do M là trung điểm của BC(gt)
^BMA = ^DMC (đối đỉnh)
=> tam giác AMB = tam giác DMC (c-g-c)
=> ^ABM = ^MCD mà 2 góc này slt
=> AB // CD
AB _|_ AC
=> CD _|_ AC
c, xét tam giác ACE có : AH _|_ AE
AH = HE
=> tam giác ACE cân tại C
d, xét tam giác BMD và tam giác CMA có L BM = MC
AM = MD
^BMD = ^CMA
=> tam giác BMD = tam giác CMA (c-g-c)
=> BD = AC
AC = CE do tam giác ACE cân tại C (câu c)
=> BD = CE
chịu
a) xét ΔABH và ΔACH, ta có :
AB = AC (giả thiết)
\(\widehat{ABC}=\widehat{ACB}\) (vì AB = AC => đó là tam giác cân, mà tam giác cân thì có 2 góc ở đáy bằng nhau)
AH là cạnh chung
ð ΔABH = ΔACH (c.c.c)
b) vì ΔABH = ΔACH, nên :
=> HB = HC (2 cạnh tương ứng)
c) hơi khó nha !