Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta áp dụng tính chất : trong tam giác vuông đường thẳng kẻ từ đỉnh ứng với cạnh huyền bằng một nửa cạnh huyền
Xét \(\Delta ABC\)có \(\widehat{CAB}=90^o\)theo đlí Pi -ta -go ta có
AC2+AB2=BC2 => 82+32=BC2
=>BC=\(\sqrt{73}\)
AM=1/2 BC
áp dụng đlí Pi-ta go với các \(\Delta CAH,\Delta BAH\)ta tìm được BH, HC
Ap dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)
\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)
Ta có hình vẽ: A H B C
Áp dụng định lý Pitago. Ta có:
BC2 = AB2 + AC2 <=> 62 + 82 = 100 cm2
100 = 10 x 10
=> BC = 10 cm
Áp dụng công thức Heron để tính chiều cao. Ta có:
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) (p là chu vi, S là diện tích, a,b,c là độ dài 3 cạnh)
Ta có: Chu vi tam giác là: 6 + 8 + 10 =24 cm
Vậy \(S=\sqrt{24\left(24-6\right)\left(24-8\right)\left(24-10\right)}=48\sqrt{42}\)
Để tính chiều cao AH, ta lấy 2 lần diện tích chia cho đáy ( BC) sẽ có được chiều cao
2 lần diện tích là: \(48\sqrt{42}.2=96\sqrt{42}\)
\(\Rightarrow AH=96\sqrt{42}:10=\frac{24\sqrt{42}}{25}\)
Độ dài cạnh BH là: (Bạn tự làm)
Độ dài cạnh HC là: (Bạn tự làm nhé)
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
ABCH20cm16cm5cm
Áp dụng định lí Pythagoras vào △ABH, ta có :
AB2 = AH2 + BH2
\(\Rightarrow\)202 = AH2 + 162
\(\Rightarrow\)AH2= 144
\(\Rightarrow\)AH = 12
Áp dụng định lí Pythagoras vào △AHC, ta có :
AC2 = AH2 + HC2
\(\Rightarrow\)AC2 = 122 + 52
\(\Rightarrow\)AC2 = 169
\(\Rightarrow\)AC = 13
Vậy AH = 12 cm
AC = 13 cm
Ta thấy: AC=AB=HA+HC+1+8=9(cm) (do ABC là tam giác cân)
Áp dụng định lý Pytago vào tam giác vuông ABH tại H, ta có:
AH2+BH2=AB2
<=>12+BH2=92
<=>1+BH2=81
<=>BH2=80(1)
<=>BH=\(4\sqrt{5}\)(cm)
Xét tam giác HBC vuông tại B. Áp dụng định lý Pytago và kết quả (1) ta có:
BH2+HC2=BC2
<=>80+82=BC2
<=>BC2=80+64=144
<=>BC=12(cm)
Vậy BC=12cm
A B C H 7 cm 2 cm 2 cm
Ta có: AC = AH + HC = 7 + 2 = 9 (cm)
Vì AB = AC => AB = 9 cm
Áp dụng định lí Pi - ta - go vào t/giác AHB vuông tại H, ta có:
AB2 = AH2 + BH2
=> BH2 = AB2 - AH2 = 92 - 72 = 32
Áp dụng định lí Pi - ta - go vào t/giác AHC vuông tại H, ta có:
BC2 = BH2 + HC2 = 32 + 22 = 36
=> BC = 6 (cm)
giúp tôi trả lời câu hỏi này, l