Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔEIC có
IB=IC
\(\widehat{AIB}=\widehat{EIC}\)
IA=IE
Do đó: ΔAIB=ΔEIC
b: Xét ΔABC và ΔECB có
AB=EC
\(\widehat{ABC}=\widehat{ECB}\)
BC chung
Do đó: ΔABC=ΔECB
a) gọi giao điểm của đường trung trực (ứng với BC) và cạnh BC là M, gọi giao điểm của đường trung trực (ứng với AD) và cạnh AD là N
Xét 2 tam giác vuông MIB và MIC có:
MB=MC (giả thiết)
MI là cạnh chung
=> Tam giác MIB=MIC ( 2 cạnh góc vuông)
=> BI=IC (2 cạnh tương ứng)
Xét 2 tam giác vuông NIA và NID có:
NA=ND (giả thiết)
NI là cạnh chung
=> Tam giác NIA=NID (2 cạnh góc vuông)
=> IA=ID ( 2 cạnh tương ứng)
Xét 2 tam giác AIB và DIC có:
IA=ID (cmt)
IB=IC (cmt)
AB=CD ( gt)
=> Tam giác AIB = DIC (cạnh-cạnh-cạnh)
b) Ta có : góc ABI = DCI ( vì tam giác AIB=DIC)
=> 180o - ABI = 180o - DCI
=> EBA - ABI = NCD - DCI
=> góc EBI = NCI
Xét hai tam giác vuông EIB và NIC có:
IB=IC(cmt)
góc EIB=NCI ( cmt)
=> Tam giác EIB=NIC( cạnh huyền - góc nhọn)
=> IE=IN ( 2 cạnh tương ứng)
Mà I nằm trong góc EBC
=> I nằm trên tia phân giác của góc EBC
Vậy AI là tia phân giác của góc BAC
c) Ta có: EB=NC ( vì tam giác EIB=NIC)
mà AB=CD ( giả thiết)
=> AB+EB= NC+CD
=> AE=ND
mà AN = ND = 1/2AD
=> AE= AN = 1/2 AD
d) Trong tam giác EIB có BI là cạnh huyền
=> IE<IB
Cho mik nhan -_o mik viết cái nì mỏi lắm óh
Trl:
a) Vì I thuộc đường trung trực của BC và AD(gt))
=> IB=IC và IA=ID (theo định lí đường trung trực).
Xét 2 ΔAIB và DIC có:
AI=DI(cmt)
AB=DC(gt)
IB=IC(cmt)
=> ΔAIB=ΔDIC(c−c−c).
b) Theo câu a) ta có ΔAIB=ΔDIC
=> BAIˆ=CDIˆ (2 góc tương ứng).
Xét ΔADIcó:
IA=ID(cmt)
=> ΔADI cân tại I.
=> ADIˆ=DAIˆ(tính chất tam giác cân).
Hay CDIˆ=CAIˆ.
Mà BAIˆ=CDIˆ(cmt)
=> BAIˆ=CAIˆ
=> AI là tia phân giác của BACˆ.
~Học tốt!~
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)