Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\)có \(\hept{\begin{cases}BC^2=5^2=25\\AB^2+AC^2=3^2+4^2=9+16=25\end{cases}}\Rightarrow BC^2=AB^2+AC^2\Rightarrow\Delta ABC\)vuông tại A (định lý Pytago đảo)
\(\Delta ABC\)vuông tại A có trung tuyến AM (M là trung điểm BC) \(\Rightarrow AM=\frac{BC}{2}=\frac{5}{2}=2,5\left(cm\right)\)
Bạn tự vẽ hình nhé
a) Gọi D là giao điểm của BI với AC; M là giao điểm của BG với AC.
Trong tg ABC có BD là phân giác => \(\frac{BC}{DC}=\frac{AB}{DA}=\frac{BC+AB}{DC+DA}=\frac{8}{AB}=\frac{8}{4}=2\)2
Trong tam giác BCD có CI là phân giác => \(\frac{IB}{ID}=\frac{BC}{DC}=2\)
Mặt khác do G là trọng tâm nên có \(\frac{BG}{GM}=2\)
Vậy suy ra \(\frac{IB}{ID}=\frac{BG}{GM}\)do đó IG //AC (Talet đảo)
b) Từ câu a) bạn tự tính IG nhé
a) Xét 2∆: ABC và HAB có
+ ∠BAC = 900(gt); ∠BHA = 900 (AH ^ BH) => ∠BAC= ∠BHA
+ ∠ABC = ∠ BAH (so le)
=> ∆ABC ~ ∆HAB
b) Xét 2∆: HAB và KCA có:
+ ∠CKA = 900 (CK ^ AK) => ∠AHB = ∠CKA
+ ∠CAK + ∠BAH = 900(do ∠BAC = 900), ∠BAH + ∠ABH = 900 (∆HAB vuông ở H) =>
∠CAK = ∠ABH
=> ∆HAB ~ ∆KCA
=> AH.AK = BH.CK
c) có: ∆ABC ~ ∆HAB (c/m a)
Ta có: + AH // BC
+ MA + MB = AB => MA + MB = 3cm
=> 34/25MB = 3
=> MB = 75/34cm
+ Diện tích ∆MBC là
S =1/2.AC.MB=75/17