K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

BC=35cm

9 tháng 2 2020

A B C

+) Ta có \(\left\{{}\begin{matrix}AB+AC=49\\AB-AC=7\end{matrix}\right.\) ( cm)

\(\Rightarrow\left\{{}\begin{matrix}AB+AC-AB+AC=49-7=42\\AB+AC+AB-AC=49+7=56\end{matrix}\right.\) ( cm)

\(\Rightarrow\left\{{}\begin{matrix}2AC=42\\2AB=56\end{matrix}\right.\) ( cm)

\(\Rightarrow\left\{{}\begin{matrix}AC=21\\AB=28\end{matrix}\right.\) (cm)

+) Xét \(\Delta ABC\) vuông tại A có

\(BC^2=AB^2+AC^2\) ( định lí Py-ta-go)

\(\Rightarrow BC^2=28^2+21^2\)

\(\Rightarrow BC^2=784+441\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=\sqrt{1225}=35\) ( do BC > 0) (cm)

Vậy BC = 35

@@ Học tốt @@
## Chiyuki Fujito

26 tháng 7 2021

AB là 

( 49 + 7 ) : 2 = 28 

AC là 

28 - 7 = 21 

Xét tam giác ABC vuông tại A 

AB^2 + AC^2 = BC^2 

21^2 + 28^2 = BC^2 

BC^2 = 1225 

BC = 35 

NM
26 tháng 7 2021

ta có 

\(BC^2=AB^2+AC^2=\frac{\left(AC+AB\right)^2}{2}+\frac{\left(AC-AB\right)^2}{2}=\frac{49^2+7^2}{2}=1225\)

Vậy \(BC=\sqrt{1225}=35cm\)

17 tháng 3 2018

Hỏi đáp Toán

chúc bạn hcoj tốt ^^

26 tháng 7 2021

AB là 

( 49 + 7 ) : 2 = 28 

AC là 

28 - 7 = 21 

Xét tam giác ABC vuông tại A 

AB^2 + AC^2 = BC^2 

21^2 + 28^2 = BC^2 

BC^2 = 1225 

BC = 35 

21 tháng 3 2022

C

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.5. Cho tam giác ABC, biết...
Đọc tiếp

1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .

2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.

3. Tính cạnh đáy BC của  tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.

4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.

5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.

a, Chứng minh tam giác ABC vuông ở A;

b, Kẻ AH vuông góc với BC. Tính AH .

6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d. 

7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :

a, A là trung điểm của DE 

b, DHE=90 độ 

8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA. 

4

Bài 1:

A C B

Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)

Độ dài cạnh AC: 28 - 7 = 21 (cm)

Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

Hay \(BC^2=21^2+28^2\)

\(\Rightarrow BC^2=441+784\)

\(\Rightarrow BC^2=1225\)

\(\Rightarrow BC=35\left(cm\right)\)

Bài 2:

A B C D

Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:

\(AB^2=AD^2+BD^2\)

\(\Rightarrow AD^2=AB^2-BD^2\)

Hay \(AD^2=17^2-15^2\)

\(\Rightarrow AD^2=289-225\)

\(\Rightarrow AD^2=64\)

\(\Rightarrow AD=8\left(cm\right)\)

Trong tam giác ABC có:

\(AD+DC=AC\)

\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)

Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:

\(BC^2=BD^2+DC^2\)

Hay \(BC^2=15^2+9^2\)

\(\Rightarrow BC^2=225+81\)

\(\Rightarrow BC^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)

31 tháng 8 2016

từ AB+AC = 49 cm

và AB-AC = 7 cm 

=> AB = (49+7) :2 = 28 cm

=> AC = AB- 7 = 28 -7 = 21cm

mà tam giác ABC có góc A = 90 độ

=> tam giác ABC vuông tại A

=> AB\(^2\) + AC\(^2\) =BC\(^2\)   ( Định lí pi-ta-go)

<=>  BC\(^2\) = AB\(^2\) +AC\(^2\) = 28\(^2\) + 21\(^2\) =1225= 35\(^2\)

=> BC= 35 cm

          vậy BC= 35 cm

CHÚC BẠN HỌC TỐT

Xét ΔABC có 

AC-AB<BC<AB+AC

\(\Leftrightarrow7-3< BC< 7+3\)

\(\Leftrightarrow4< BC< 10\)

\(\Leftrightarrow BC\in\left\{5;7\right\}\)

17 tháng 7 2021

Ta có: AC + AB > BC > AC - AB(bất đẳng thức tam giác)

         =>7 + 3 > BC > 7 - 3

            10 > BC > 4

Mà độ dài BC là số nguyên tố nên BC\(\in\)(5,7)

Với BC =5 thì \(\Delta ABC\) là tam giác thường

Với BC =7 thì \(\Delta ABC\)  là tam giác cân

 

16 tháng 3 2016

Độ dài đoạn AB=(17+7):2=12 cm

Đọ dài đoạn AC=(17-7):2=5cm

Vì tam giác ABC vuông tại A

Áp dụng định lý PI-ta-go có:

BC2=AB2+AC2

=>BC2=122+52

=>BC2=144+25

=>BC2=169

=>BC=\(\sqrt{169}=13cm\)

Bài 2: 

a: Đây là tam giác vuông

b: Đây ko là tam giác vuông