K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

18 tháng 7 2021

Bạn tham khảo bài tại link :

https://olm.vn/hoi-dap/detail/244883081409.html

hoặc :

Câu hỏi của Vũ Nguyễn Phương Thảo - Toán lớp 8 - Học trực tuyến OLM

Hok tốt

18 tháng 7 2021

Trả lời :

Bạn vào hoc 24 có bài đấy

9 tháng 7 2016

Áp dụng định lí Pi ta go vào tam giác vuông AHB ta có

\(AB^2=AH^2+BH^2\) =>\(BH^2=AB^2-AH^2\)=>\(BH=\sqrt{30^2-24^2}=\sqrt{324}=18\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có 

\(AH^2=BH.CH\)=>\(HC=\frac{AH^2}{BH}\)=>\(HC=\frac{24^2}{18}=\frac{576}{18}=32\left(cm\right)\)

Ta có  \(BC=HC+HB\) => \(BC=32+18=50\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có 

\(AC^2=BC.HC\)

=>\(AC=\sqrt{BC.HC}=\sqrt{50.32}=\sqrt{1600}=40\left(cm\right)\)*Chỗ này bạn dùng Pitago tính cũng được nha*

 

 

 

9 tháng 7 2016

Ta có góc HBD+ góc ABH = 90 độ mà góc ACH + góc ABH = 90 độ 

=> góc HBD = góc ACH 

Xét tam giác BHD và tam giác CHA có 

góc BHD = góc CHA = 90 độ

góc HBD = góc ACH (chứng minh trên)

Do đó tam giác BHD ~ tam giác CHA

=> \(\frac{BD}{BH}=\frac{AC}{HC}\)

=>\(BD=\frac{AC.BH}{HC}=\frac{18.40}{32}=\frac{720}{32}=22,5\left(cm\right)\)