Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
B A C E D K
a) Xét \(\Delta\)ABD và \(\Delta\)EBD có:
BD chung
\(\widehat{ABD}\) = \(\widehat{EBD}\) (BD là tia phân giác của \(\widehat{ABE}\) )
AB = EB (gt)
=> \(\Delta\)ABD = \(\Delta\)EBD (c.g.c)
b) Gọi giao điểm của BD và AE là K.
Xét \(\Delta\)ABK và \(\Delta\)EBK có:
AB = EB (GT)
\(\widehat{ABK}\) = \(\widehat{EBK}\) (câu a)
BK chung
=> \(\Delta\)ABK = \(\Delta\)EBK (c.g.c) => \(\widehat{AKB}\) = \(\widehat{EKB}\) (2 góc t ư)
và AK = EK (2 cạnh tương ứng)
Do đó K là trung điểm của AE.
mà \(\widehat{AKB}\) + \(\widehat{EKB}\) = 180 độ (kề bù)
=> \(\widehat{AKB}\) = \(\widehat{EKB}\) = 90 độ
Do vậy BK \(\perp\) AE.
Chúc bn học tốt Nguyễn Thị Nhật Liên
![](https://rs.olm.vn/images/avt/0.png?1311)
a,
xét tg bea và tg bem có
be chung
góc b1= góc b2[gt]
ba=bm[gt]
suy ra tg bea = tg bem[c.g.c]
b,
vì tg bea = tg bem[cmt]
suy ra góc a = góc m[tương ứng]
mà a = 90 độ
suy ra góc m = 90 độ
suy ra em vg góc bc
c,
tớ đoán là bằng nhau nhưng chưa biết cách tính
a) Xét tam giác BEA và tam giác BEM ta có:
BA=BM (gt)
góc ABE=góc MBE (gt)
BE là cạnh chung
=> tam giác BEA=tam giác BEM ( c-g-c)
b) Vì tam giác BEA= tam giác BEM
=> góc BME= góc BAE (góc tương ứng)
=>góc BME= 90* (góc BAE=90*)
=>EM vuông góc BC
c) ta có :
góc BME+góc EMC= 180*(kề bù)
=>90*+EMC=180*
=>EMC=90*
Mặt khác:
ABC=90*-C
Ta Có
EMC+MCE+MEC=180*
=> 90*+MCE+MEC=180*
=>C+MEC=90*
=>MEC=90*-C
=>ABC=MEC=90*-C
Vậy ABC=MEC
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác ABD và tam giác EBD có : BD chung
góc ABD = góc EBD do BD là pg của góc ABC (Gt)
BE = BA (gt)
=> tam giác ABD = tam giác EBD (c-g-c)
b, tam giác ABD = tam giác EBD (câu a)
=> DA = DE (đn)
và góc DAB = góc DEB (đn)
góc DAB = 90
=> góc DEB = 90
=> DE _|_ BC
=> tam giác DEC vuông tại E (đn)
=> góc CDE + góc BCA = 90 (đl)
tam giác ABC vuông tại A (gt) => góc ABC + góc BCA = 90 (Đl)
=> góc ABC = góc CDE
c, AH _|_ BC (Gt)
DE _|_ BC (câu b)
=> AH // DE (đl)
B H E A D C
Mình vẽ hơi xấu mong bạn thông cảm:)
a) \(\Delta ABD\) và \(\Delta EBD\) có :
\(BE=BA\)
\(\widehat{ABD}=\widehat{EBD}\) ( vì BD là phân giác )
\(BC:\) cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\left(1\right)\)
b) Từ ( 1 ) => \(DA=DE\) và \(\widehat{BAD}=\widehat{BED}=90^0\)
Mặt khác , ta có : \(\widehat{ABC}=\widehat{BAC}-\widehat{C}=90^0-\widehat{C}\)
\(\widehat{EDC}=\widehat{DEC}-\widehat{C}=90^0-\widehat{C}\)
\(\Rightarrow\widehat{ABC}=\widehat{EDC}\)
c) Ta có : \(AH\perp BC\), \(DE\perp BC\) ( vì \(\widehat{DEC}=90^0\) ) nên AH//DE
![](https://rs.olm.vn/images/avt/0.png?1311)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
A B C E D 1 2
a) Xét tam giác ABD và EBD có:
BD chung
\(\widehat{B_1}=\widehat{B_2}\)(BD là phân giác \(\widehat{ABC}\))
BA=BE (gt)
=> Tam giác ABD= tam giác EBD (cgc) (đpcm)