Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)
\(\Rightarrow4\left(3a+2b\right)⋮17\)
\(\Rightarrow12a+8b⋮17\)
\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)
\(\text{#Not_chắv_:)}\)
a. Ta có :
2(10a + b) - (3a+2b)
= 20a+2b-3a-2b
= 17a
Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17
=> 2( 10a+b) - (3a+2b) \(\vdots\) 17
Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17
Mà (2,17)=1 => 10a+b \(\vdots\) 17
Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17
b. Câu b cx tương tự nha
Ta có :
\(3a+2b⋮17\)
\(\Rightarrow9\left(3a+2b\right)⋮17\)
\(\Rightarrow27a+18b⋮17\)
\(\Rightarrow\left(17a+17b\right)+\left(10a+b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)(1)
Ta có :
\(10a+b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\)
\(\Rightarrow20a+2b⋮17\)
\(\Rightarrow17a+3a+2b⋮17\)
\(\Rightarrow3a+2b⋮17\)(2)
Từ (1) và (2) \(\Rightarrow3a+2b⋮17\Leftrightarrow10a+b⋮17\)(đpcm)
_Chúc bạn học tốt_
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
Đặt :
\(\left\{{}\begin{matrix}x=3a+2b\\y=10a+b\end{matrix}\right.\)
\(\Leftrightarrow2y-x=2\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b=17a\)
Vì \(17a⋮17\)
\(\Leftrightarrow2y-x⋮17\)
Mà \(x⋮17\)
\(\Leftrightarrow2y⋮17\)
\(\Leftrightarrow2\left(10a+b\right)⋮17\)
\(\Leftrightarrow10a+b⋮17\left(ƯCLN\left(2,17\right)=1\right)\)
\(\Leftrightarrowđpcm\)
Ta có:
\(3a+2b⋮17\\ \Leftrightarrow30a+20b⋮17\\ 30a+20b-17b⋮17\\ \Leftrightarrow30a+3b⋮17\\ \Leftrightarrow3\left(10a+b\right)⋮17\)
Vì \(3⋮̸17\Rightarrow10a+b⋮17\left(dpcm\right)\)
a/
2x+3y+9x+5y=11x+8y = 17x+17y-(6x+9y)=17(x+y)-3(2x+3y)
17(x+y) chia hết cho 17
2x+3y chia hết cho 17 => 3(2x+3y) chia hết cho 17 => (2x+3y)+(9x+5y) chia hết cho 17 mà 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17
Các trường hợp khác tương tự
Tìm số tự nhiên \(\overline{abcd}\)sao cho số đó \(⋮\)tích của \(\overline{ab}\)và \(\overline{cd}\)
Đặt ab = m , cd = n
Ta có 10m + n chia hết cho mn
=>n chia hết cho m và 10m chia hết cho n
S đó tìm hết
Bài giải
Ta có :
\(\overline{abcd}⋮\overline{ab.\overline{cd}}\) (1)
\(\Rightarrow100.\overline{ab}+\overline{cd}⋮\overline{ab}.\overline{cd}\) (2)
\(\Rightarrow\overline{cd}⋮\overline{ab}\)
Đặt \(\overline{cd}=k.ab\)với \(k\inℕ,1\le k\le9\) (3)
Thay vào (2) :
\(100.\overline{ab}+k.\overline{ab}⋮k.\overline{ab}.\overline{ab}\)
\(\Rightarrow100+k⋮k.\overline{ab}\) (4)
\(\Rightarrow100⋮k\) (5)
Từ (3) và (5) :
\(\Rightarrow k\in\left\{1;2;4;5\right\}\)
Với k=1 ,thay vào (4) \(⋮101⋮\overline{ab}\) (loại)
Với k=2 thay vào (4) :102 \(⋮2.\overline{ab}\Rightarrow51⋮\overline{ab}\).Khi đó:
\(\overline{ab}=17\) và \(\overline{cd}=34\) ,hoặc \(\overline{ab}=51\)và \(\overline{cd}=102\)(loại)
Với k=4 thay vào (4) :104 \(⋮\)4.ab hoặc ab = 26 và cd= 104 (loại)
Với k=5 thay vào (4) :105 \(⋮\)5 .ab \(\Rightarrow\)21\(⋮\)ab .Khi đó :
\(\overline{ab}=21\)và \(\overline{cd}=105\)(loại)
KL : Có hai đáp số : 1734 và 1352
Theo đề bài, ta có:
10a+b- (10b+a)=72\(\Leftrightarrow\)9a-9b=72 \(\Leftrightarrow\) a-b = 8 =>a = 8+b
Mà a,b là số tự nhiên <9 và >1 => 8+b <9
=> b = 1, a = 9
Vậy số tự nhiên \(\overline{ab}\)=91
Theo bài ra, ta có: \(\overline{ab}\) - \(\overline{ba}\)
= 10a + b - (10b + a)
= 10a + b - 10b - a
= 9a - 9b = 9(a - b) = 72
\(\Rightarrow\) a - b = 72 : 9 = 8
\(\Rightarrow\) a = 8 + b
Mà a \(\le\) 9 \(\Rightarrow\) 8 + b \(\le\) 9 \(\Rightarrow\) b = 1; a = 9
Vậy \(\overline{ab}\) = 91
Ta có: \(\overline{ab}\text{⋮}17\)
\(\Rightarrow\left(10a+b\right)\text{⋮}17\)
\(\Rightarrow2\left(10a+b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b\right)\text{⋮}17\)
Giả sử \(\left(3a+2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b\right)-\left(3a+2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b-3a-2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a-3a\right)+\left(2b-2b\right)\text{⋮}17\)
\(\Rightarrow17a\text{⋮}17\left(đú\text{ng}\right)\)
Vậy điều giả sử là đúng, nghĩa là \(\left(3a+2b\right)\text{⋮}17\) (đpcm)