\(\overline{ab}\) \(⋮\) 17 . Chứng minh : 3a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

Ta có: \(\overline{ab}\text{⋮}17\)

\(\Rightarrow\left(10a+b\right)\text{⋮}17\)

\(\Rightarrow2\left(10a+b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b\right)​\text{⋮}17\)

Giả sử \(\left(3a+2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b\right)-\left(3a+2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a+2b-3a-2b\right)\text{⋮}17\)

\(\Rightarrow\left(20a-3a\right)+\left(2b-2b\right)\text{⋮}17\)

\(\Rightarrow17a\text{⋮}17\left(đú\text{ng}\right)\)

Vậy điều giả sử là đúng, nghĩa là \(\left(3a+2b\right)\text{⋮}17\) (đpcm)

 

5 tháng 2 2020

\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)

  \(\Rightarrow4\left(3a+2b\right)⋮17\)

\(\Rightarrow12a+8b⋮17\)

\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)

\(\text{#Not_chắv_:)}\)

5 tháng 2 2020

a. Ta có :

    2(10a + b) - (3a+2b)

= 20a+2b-3a-2b

= 17a

Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17

                => 2( 10a+b) - (3a+2b) \(\vdots\) 17

Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17

 Mà (2,17)=1 => 10a+b \(\vdots\) 17

Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17

b. Câu b cx tương tự nha

10 tháng 7 2018

Ta có :

\(3a+2b⋮17\)

\(\Rightarrow9\left(3a+2b\right)⋮17\)

\(\Rightarrow27a+18b⋮17\)

\(\Rightarrow\left(17a+17b\right)+\left(10a+b\right)⋮17\)

\(\Rightarrow10a+b⋮17\)(1)

Ta có :

\(10a+b⋮17\)

\(\Rightarrow2\left(10a+b\right)⋮17\)

\(\Rightarrow20a+2b⋮17\)

\(\Rightarrow17a+3a+2b⋮17\)

\(\Rightarrow3a+2b⋮17\)(2)

Từ (1) và (2) \(\Rightarrow3a+2b⋮17\Leftrightarrow10a+b⋮17\)(đpcm)

_Chúc bạn học tốt_

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

9 tháng 10 2017

Đặt :

\(\left\{{}\begin{matrix}x=3a+2b\\y=10a+b\end{matrix}\right.\)

\(\Leftrightarrow2y-x=2\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b=17a\)

\(17a⋮17\)

\(\Leftrightarrow2y-x⋮17\)

\(x⋮17\)

\(\Leftrightarrow2y⋮17\)

\(\Leftrightarrow2\left(10a+b\right)⋮17\)

\(\Leftrightarrow10a+b⋮17\left(ƯCLN\left(2,17\right)=1\right)\)

\(\Leftrightarrowđpcm\)

9 tháng 10 2017

Ta có:

\(3a+2b⋮17\\ \Leftrightarrow30a+20b⋮17\\ 30a+20b-17b⋮17\\ \Leftrightarrow30a+3b⋮17\\ \Leftrightarrow3\left(10a+b\right)⋮17\)

\(3⋮̸17\Rightarrow10a+b⋮17\left(dpcm\right)\)

12 tháng 7 2017

a/

2x+3y+9x+5y=11x+8y = 17x+17y-(6x+9y)=17(x+y)-3(2x+3y)

17(x+y) chia hết cho 17

2x+3y chia hết cho 17 => 3(2x+3y) chia hết cho 17 => (2x+3y)+(9x+5y) chia hết cho 17 mà 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17

Các trường hợp khác tương tự

30 tháng 5 2018

Đặt ab = m , cd = n 

Ta có 10m + n chia hết cho mn

=>n chia hết cho m và 10m chia hết cho n

S đó tìm hết 

30 tháng 5 2018

Bài giải

Ta có :

\(\overline{abcd}⋮\overline{ab.\overline{cd}}\)                      (1)

\(\Rightarrow100.\overline{ab}+\overline{cd}⋮\overline{ab}.\overline{cd}\)  (2)                       

\(\Rightarrow\overline{cd}⋮\overline{ab}\)

Đặt \(\overline{cd}=k.ab\)với \(k\inℕ,1\le k\le9\) (3)

 Thay vào (2) :

\(100.\overline{ab}+k.\overline{ab}⋮k.\overline{ab}.\overline{ab}\)

\(\Rightarrow100+k⋮k.\overline{ab}\) (4)

\(\Rightarrow100⋮k\)                 (5)

Từ (3) và (5) :

\(\Rightarrow k\in\left\{1;2;4;5\right\}\)

Với k=1 ,thay vào (4) \(⋮101⋮\overline{ab}\) (loại)

Với k=2 thay vào (4) :102 \(⋮2.\overline{ab}\Rightarrow51⋮\overline{ab}\).Khi đó:

\(\overline{ab}=17\) và \(\overline{cd}=34\) ,hoặc \(\overline{ab}=51\)và \(\overline{cd}=102\)(loại)

Với k=4 thay vào (4) :104 \(⋮\)4.ab  hoặc ab = 26 và cd= 104 (loại)

Với k=5 thay vào (4) :105 \(⋮\)5 .ab \(\Rightarrow\)21\(⋮\)ab .Khi đó :

                                 \(\overline{ab}=21\)và \(\overline{cd}=105\)(loại)

KL : Có hai đáp số : 1734 và 1352

8 tháng 12 2016

Theo đề bài, ta có:

10a+b- (10b+a)=72\(\Leftrightarrow\)9a-9b=72 \(\Leftrightarrow\) a-b = 8 =>a = 8+b

Mà a,b là số tự nhiên <9 và >1 => 8+b <9

=> b = 1, a = 9

Vậy số tự nhiên \(\overline{ab}\)=91

4 tháng 1 2020

Theo bài ra, ta có: \(\overline{ab}\) - \(\overline{ba}\)

= 10a + b - (10b + a)

= 10a + b - 10b - a

= 9a - 9b = 9(a - b) = 72

\(\Rightarrow\) a - b = 72 : 9 = 8

\(\Rightarrow\) a = 8 + b

Mà a \(\le\) 9 \(\Rightarrow\) 8 + b \(\le\) 9 \(\Rightarrow\) b = 1; a = 9

Vậy \(\overline{ab}\) = 91