K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

dư 1

tick mình nha

31 tháng 12 2015

tick cho mình lên 40 điểm hỏi đáp đi

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)a) Có giá trị là số tự nhiênb) Là phân số tối giảnBài 4: a) Tìm số tự nhiên n để n+15 chia...
Đọc tiếp

Bài 1: Cho các chữ số 0,a,b. Hãy viết tất cả các số có 3 chữ số. Chứng minh rằng tổng tất cả các số đó chia hết cho 211.

Bài 2: Viết số 1998 thành tổng của 3 số tự nhiên tùy ý. Chứng minh rằng tổng các số lập phương của 3 số đó chia hết cho 6.

Bài 3: Tìm số tự nhiên n để \(\frac{6n+99}{3n+4}\)

a) Có giá trị là số tự nhiên

b) Là phân số tối giản

Bài 4: a) Tìm số tự nhiên n để n+15 chia hết cho n+3

b) Tìm số tự nhiên n sao cho 2-1 chia hết cho 7

Bài 5: a) Tìm số dư khi chia (n3-1)111X(n2-1)333 cho n (n thuộc N)

b) Số A chia 7 dư 3, chia 17 dư 12, chia 23 dư 7. Hỏi A chia 2737 dư bao nhiêu?

Bài 6: Cho a * b =45512 . Tìm số dư trong phép chia a+b cho 3,4.

Bài 7: Tìm số dư khi chia (910)11 - (59)10 cho 13

Bài 8: Tìm chữ số hàng đơn vị, hàng chục, hàng trăm của (29)2010

0
3 tháng 1 2016

\(1\)

3 tháng 1 2016

 du 1 phai ko ?????????????

3 tháng 11 2017

Đề bài của em bị sai nhé.

Ta có thể sửa thành hai đề bài đúng:

Bài 1: Cho n là số tự nhiên, n>3, n chia hết cho 3. CMR n2 chia hết 3.

Giải: 

n chia hết 3 nên n có dạng 3k (k là số tự nhiên)

Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.

Bài 2: Cho n là số tự nhiên, n>3, n  không chia hết cho 3. CMR n2:3 dư 1

Giải:

Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)

Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.

Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.

Vậy n2 luôn chia 3 dư 1.

15 tháng 8 2018

Bài giải :  

n chia hết 3 nên n có dạng 3k (k là số tự nhiên)

Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.

Bài 2: Cho n là số tự nhiên, n>3, n  không chia hết cho 3. CMR n2:3 dư 1

Giải:

Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)

Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.

Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.

Vậy n2 luôn chia 3 dư 1.

 Đúng 2  Sai 1

4 tháng 1 2016

xin lỗi mình vội

mình chỉ có thể nói là ra 1

4 tháng 1 2016

xin lỗi nha

mih chỉ nói là ra 1 thôi

mong bạn thông cảm

15 tháng 12 2017

2.Gọi số đó là x . Vì chia x cho 255 ta được số dư là 170

=> x = 255 . p + 170 ( p là số nguyên  )

=> x = 3 . 85 . p + 2 . 85

=> x = 85 . ( 3 . p + 2 ) chia hết cho 85

=> x chia hết cho 85

 
 
14 tháng 11 2016

4

Do 288 chia n dư 38=>250 chia hết cho n (1)

                              => n > 38 (2)

Do 414 chia n dư 14=> 400 chia hết cho n (3)

Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)

=> n=50

14 tháng 11 2016

1

x+15 chia hết cho x+2

x+2 chia hết cho x+2 

=> x+15-(x+2) chia hết ch0 x+2

=>13 chia hết cho x+2

Do x thuộc N => x+2>= 0+2=2

Mà 13 chia hết cho 1 và 13

=> x+2 = 13

=> x=11