Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài của em bị sai nhé.
Ta có thể sửa thành hai đề bài đúng:
Bài 1: Cho n là số tự nhiên, n>3, n chia hết cho 3. CMR n2 chia hết 3.
Giải:
n chia hết 3 nên n có dạng 3k (k là số tự nhiên)
Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.
Bài 2: Cho n là số tự nhiên, n>3, n không chia hết cho 3. CMR n2:3 dư 1
Giải:
Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)
Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.
Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.
Vậy n2 luôn chia 3 dư 1.
Bài giải :
n chia hết 3 nên n có dạng 3k (k là số tự nhiên)
Vậy n2 = (3k)2 = 9k2 cũng sẽ chia hết cho 3.
Bài 2: Cho n là số tự nhiên, n>3, n không chia hết cho 3. CMR n2:3 dư 1
Giải:
Do n không chia hết cho 3 nên n = 3k + 1 hoặc n = 3k + 2 (k là số tự nhiên)
Với n = 3k + 1, n2 = (3k + 1)2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 chia 3 dư 1.
Với n = 3k + 2, n2 = (3k + 2)2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 chia 3 dư 1.
Vậy n2 luôn chia 3 dư 1.
Đúng 2 Sai 1
2.Gọi số đó là x . Vì chia x cho 255 ta được số dư là 170
=> x = 255 . p + 170 ( p là số nguyên )
=> x = 3 . 85 . p + 2 . 85
=> x = 85 . ( 3 . p + 2 ) chia hết cho 85
=> x chia hết cho 85
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
dư 1
tick mình nha
tick cho mình lên 40 điểm hỏi đáp đi