Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT Cô sy cho 2 số dương x và 1/x.
\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}=2}\)Dấu bằng xảy ra khi \(x=\frac{1}{x}\)với x>0 thì x=1.
b). Nhân 2 vế với (-1) Viết BĐT thành: \(-x+\frac{1}{-x}\ge2\). Với x<0 thì -x>0 áp dụng BĐT phần a) cho số -x dương.
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
a)Dự đoán dấu "=" xảy ra tại \(x=\frac{1}{2}\),hay \(x^2=\frac{1}{4}\).Ta biến đổi như sau:
\(A=\frac{x^2+1}{x}=\frac{x^2+\frac{1}{4}+\frac{3}{4}}{x}=\frac{x^2+\frac{1}{4}}{x}+\frac{3}{4x}\) (1)
Do x > 0 nên \(\frac{x^2+\frac{1}{4}}{x}\ge\frac{2\sqrt{\frac{1}{4}x}}{x}=\frac{2x.\frac{1}{2}}{x}=1\) (BĐT Cô si) (2)
\(0< x\le\frac{1}{2}\Rightarrow\frac{1}{x}\ge2\Rightarrow\frac{3}{4x}\ge\frac{6}{4}=\frac{3}{2}\) (3)
Từ (1),(2) và (3) suy ra \(A\ge1+\frac{3}{2}=\frac{5}{2}\) hay \(A_{min}=\frac{5}{2}\Leftrightarrow x=\frac{1}{2}\)
b)Ta có: \(A=\frac{x^2+1}{x}=\frac{x^2}{x}+\frac{1}{x}=x+\frac{1}{x}\)
Dự đoán xảy ra cực trị tại x = 2,ta biến đổi như sau:
\(x+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\)
\(\ge2\sqrt{\frac{1x}{4x}}+\frac{3x}{4}=2.\frac{1}{2}+\frac{3x}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)
Vậy ....
Ngoài ra câu b) còn có thể giải như sau:
Dự đoán xảy ra cực trị tại x = 2,tức là x2 =4 ,ta biến đổi:
\(A=\frac{x^2+4-3}{x}=\frac{x^2+4}{x}-\frac{3}{x}\) (1)
Do x > 0 nên \(\frac{x^2+4}{x}\ge\frac{1\sqrt{4x^2}}{x}=\frac{2.x.2}{x}=4\) (2)
Do \(x\ge2\Rightarrow\frac{1}{x}\le\frac{1}{2}\Rightarrow\frac{3}{x}\le\frac{3}{2}\Rightarrow\frac{-3}{x}\ge\frac{-3}{2}\) (3)
Từ (1),(2) và (3) suy ra \(A\ge4-\frac{3}{2}=\frac{5}{2}\)
Vậy ...
a) Ta có : \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{x^2+1}{x}\ge2\Leftrightarrow x+\frac{1}{x}\ge2\)(vì x > 0)
b) \(\left(x+1\right)^2\ge0\Leftrightarrow x^2+2x+1\ge0\Leftrightarrow x^2+1\ge-2x\Leftrightarrow\frac{x^2+1}{x}\le-2\Leftrightarrow x+\frac{1}{x}\le-2\)(vì x < 0)
a) Ta có: \(x+\frac{1}{x}-2=\frac{x^2-2x+1}{x}=\frac{\left(x-1\right)^2}{x}\)
Vì \(x>0,\left(x-1\right)^2\ge0\)nên \(x++\frac{1}{x}-2\ge0\)
Vậy \(x+\frac{1}{x}\ge2\)vs \(x>0\)
b) Ta có: \(x+\frac{1}{x}+2=\frac{x^2+2x+1}{x}=\frac{\left(x+1\right)^2}{x}\)
Vì \(x< 0,\left(x+1\right)^2\le0\), nên \(x+\frac{1}{x}\le0\)
Vậy \(x+\frac{1}{x}\le-2\)vs \(x< 0\)