Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) A=m3+3m2-m-3
=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)
=(m-1)(m2+m+1+m+2m+2)
=(m-1)(m2+4m+4-1)
=(m-1)[ (m+2)2-1 ]
=(m-1)(m+1)(m+3)
với m là số nguyên lẻ
=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)
m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)
m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)
ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)
A=(2k-2)2k(2k+2)
=(4k2-4)2k
=8k(k-1)(k+1)
k-1 ;'k và k+1 là 3 số nguyên liên tiếp
=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3
=> tích (k-1)k(k+1) luôn chia hết cho 6
=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48
=> (m3+3m3-m-3) chia hết cho 48(đfcm)
Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:
\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)
Ta thấy 34 = 52 + 32 nên ta có bảng:
2x-1 | 5 | -5 | 3 | -3 |
x | 3 | -2 | 2 | -1 |
2y-1 | 5 | -5 | 3 | -3 |
y | 3 | -3 | 2 | -1 |
Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)