Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
\(a=34,\left(12\right)\)
\(=34\dfrac{12}{99}=34\dfrac{4}{33}=\dfrac{1126}{33}\)
\(\frac{P_nC_n^k}{n!A_n^k}=\frac{n!.\frac{n!}{k!\left(n-k\right)!}}{n!.\frac{n!}{\left(n-k\right)!}}=\frac{1}{k!}\)
Chắc là bạn ghi nhầm đề
Bạn sửa lại dòng thứ 5 của câu 1 giúp mình:
\(-\frac{1}{24}\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)
2)
\(Y_n=\frac{\frac{\left(n+4\right)!}{n!}}{\left(n+2\right)!}-\frac{143}{4.n!}\)
\(=\frac{\left(n+4\right)\left(n+3\right)}{n!}-\frac{143}{4n!}\)
\(=\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)
\(Y_n< 0\)
<=> \(\frac{1}{4n!}\left(2n+19\right)\left(2n-5\right)\)<0
<=> \(\left(2n+19\right)\left(2n-5\right)< 0\)
<=> \(-\frac{19}{2}< n< \frac{5}{2}\)
Đối chiếu với n \(\ge\)1 và n là số tự nhiên
ta có: n = 1 hoặc n = 2
Vậy các số hạng âm của dãy số ( Y_n) là:
\(Y_1=-\frac{63}{4};Y_2=-\frac{23}{8}\)
1) \(X_n=\frac{5}{4}.\frac{\left(n-2\right)!}{\left(n-4\right)!}-\frac{\left(n-1\right)!}{4!\left(n-5\right)!}+\frac{\left(n-1\right)!}{3!\left(n-4\right)!}\)
\(=\frac{5}{4}.\left(n-2\right)\left(n-3\right)-\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)}{24}+\frac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)
= \(\left(n-2\right)\left(n-3\right)\left(\frac{5}{4}-\frac{\left(n-1\right)\left(n-4\right)}{24}+\frac{n-1}{6}\right)\)
= \(\left(n-2\right)\left(n-3\right)\left(-\frac{n^2}{24}+\frac{3n}{8}+\frac{11}{12}\right)\)
= - \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\)
Để \(X_n>0\)
<=> \(\left(n-2\right)\left(n-3\right)\left(n+2\right)\left(n-11\right)\) < 0
<=> n \(\in\left(-2;2\right)\cup\left(3;11\right)\)
Đối chiếu đk n \(\ge\)5
ta có n \(\in\) [ 5; 11 ) và n là số tự nhiên.
Các số hạng dương là:
\(X_5;X_6;...;X_{10}\) ( tự thay vào rồi tính kết quả nhé)
VD: \(X_5=\frac{5}{4}.A^2_3-C^4_4+C^3_4=\frac{21}{2}\)