K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

Đáp án C

15 tháng 11 2017

Đề không sai đâu !!

18 tháng 10 2018

Bài a làm gì có z

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

11 tháng 7 2018

Đáp án đúng : A

 

18 tháng 6 2019

Đáp án D

6 tháng 12 2018

Đáp án D

11 tháng 1 2018

Đáp án D.

Gọi   M a ; b là điểm biểu diễn số phức z = a + b i . Đặt I = 1 ; 1   , A 7 ; 9  và   B 0 ; 8

Ta xét bài toán: Tìm điểm M thuộc đường tròn   C có tâm I, bán kính   R = 5 sao cho biểu thức P = M A + 2 M B  đạt giá trị nhỏ nhất.

Trước tiên, ta tìm điểm K x ; y  sao cho  M A = 2 M K   ∀ M ∈ C   .

Ta có  

  M A = 2 M K ⇔ M A 2 = 4 M K 2 ⇔ M I → + I A → 2 = 4 M I → + I K → 2

⇔ M I 2 + I A 2 + 2 M I → . I A → = 4 M I 2 + I K 2 + 2 M I → . I K →

⇔ 2 M I → I A → − 4 I K → = 3 R 2 + 4 I K 2 − I A 2   *

(*) luôn đúng ∀ M ∈ C ⇔ I A → − 4 I K → = 0 → 3 R 2 + 4 I K 2 − I A 2 = 0 .

I A → − 4 I K → = 0 → ⇔ 4 x − 1 = 6 4 y − 1 = 8 ⇔ x = 5 2 y = 3

Thử trực tiếp ta thấy  K 5 2 ; 3    thỏa mãn 3 R 2 + 4 I K 2 − I A 2 = 0 .

Ta cos  M A + 2 M B = 2 M K + 2 M B = 2 M K + M B ≥ 2 K B   .

Vì B I 2 = 1 2 + 7 2 = 50 > R 2 = 25  nên B nằm ngoài (C).

Vì K I 2 = 3 2 2 + 2 2 < R 2 = 25  nên K nằm trong (C)  .

Dấu bằng trong bất đẳng thức trên xảy ra khi và chỉ khi M thuộc đoạn thẳng BK  . Do đó  M A + 2 M B  nhỏ nhất khi và chỉ khi M là giao điểm của (C) và đường thẳng BK.

Phương trình đường thẳng B K : 2 x + y − 8 = 0 .

Phương trình đường tròn C : x − 1 2 + y − 1 2 = 25 .

Tọa độ điểm M là nghiệm của hệ

2 x + y = 8 x − 1 2 + y − 1 2 = 25 ⇔ x = 1 y = 6

 hoặc x = 5 y = − 2 .

Thử lại thấy M 1 ; 6  thuộc đoạn BK.

Vậy  a = 1, b = 6 ⇒ a + b = 7   .

18 tháng 4 2017

Chọn đáp án B

Từ giả thiết ta có:

Suy ra tập hợp các điểm biểu diễn số phức z là miền mặt phẳng

(T) thỏa mãn (miền tô đậm trong hình vẽ bên

Gọi A, B là các giao điểm của đường thẳng 2 x + y + 2 = 0  và đường tròn (C’) : x - 2 2 + y + 1 2 = 25

Ta tìm được A(2; -6) và B(-2; 2)

Ta có :

Đường tròn (C) cắt miền (T) khi và chỉ khi

15 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(x^2+y^2+z^2\le3\)

\(\Rightarrow xy+yz+xz\le3\)

Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)

Ta có \(xy+yz+xz\le3\)

\(\Rightarrow xy+yz+xz+3\le6\)

\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z=1\)