Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$a^2-1=(a-1)(a+1)$
Vì $a$ là số nguyên tố lớn hơn $3$ nên $a$ không chia hết cho $3$. Suy ra $a$ chia $3$ dư $1$ hoặc $2$
Nếu $a$ chia $3$ dư $1\Rightarrow a-1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$
Nếu $a$ chia $3$ dư $2\Rightarrow a+1\vdots 3\Rightarrow a^2-1=(a-1)(a+1)\vdots 3$
Vậy $a^2-1\vdots 3(1)$
Mặt khác, $a$ là số nguyên tố lớn hơn $3$ thì $a$ lẻ. Do đó $a$ có dạng $4k+1$ hoặc $4k+3$ ($k\in\mathbb{Z}$)
Nếu \(a=4k+1\Rightarrow a^2-1=(4k+1)^2-1=16k^2+8k\vdots 8\)
Nếu \(a=4k+3\Rightarrow a^2-1=(4k+3)^2-1=16k^2+24k+8\vdots 8\)
Vậy $a^2-1\vdots 8(2)$
Từ $(1);(2)$ mà $(3,8)=1$ nên $a^2-1\vdots 24$ (đpcm)
Bài 2:
Từ bài 1 ta thấy rằng với mọi số $a$ là số nguyên tố lớn hơn 3 thì $a^2-1\vdots 24(1)$
Tương tự $b^2-1\vdots 24(2)$
Từ \((1);(2)\Rightarrow (a^2-1)-(b^2-1)\vdots 24\)
\(\Leftrightarrow a^2-b^2\vdots 24\) (đpcm)
Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
Vì a,b là các số nguyên tố lớn hơn 3
=> a,b đều lẻ
=> \(\hept{\begin{cases}\left(a-b\right)⋮2\\\left(a+b\right)⋮4\end{cases}}\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)⋮8\)
Ta xét 2 số a,b trong 2 TH sau:
Vì a,b không chia hết cho 3 nên
Nếu a,b cùng dư khi chia cho 3 => a-b chia hết cho 3
Nếu a,b khác dư khi chia cho 3 => a+b chia hết cho 3
=> \(\left(a-b\right)\left(a+b\right)\) luôn chia hết cho 3
Từ 2 điều trên => \(a^2-b^2⋮24\)
Áp dụng liên tiếp BĐT \(\frac{\left(x+y\right)^2}{2}\le x^2+y^2\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\left(\frac{a+b}{2}\right)^4=\left(\frac{\frac{\left(a+b\right)^2}{2}}{2}\right)^2\le\left(\frac{a^2+b^2}{2}\right)^2=\left(\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\right)\le\frac{a^4+b^4}{2}\)
Dấu "=" xảy ra tại a=b
Vậy..................
b) \(\frac{8-y}{y-7}+\frac{1}{7-y}=8\)
ĐKXĐ: \(x\ne7\)
\(\Leftrightarrow\frac{\left(8-y\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}+\frac{y-7}{\left(y-7\right)\left(7-y\right)}=\frac{8\left(y-7\right)\left(7-y\right)}{\left(y-7\right)\left(7-y\right)}\)
\(\Rightarrow56-15y+y^2+y-7=112y-8y^2-392\)
\(\Leftrightarrow49-14y+y^2=112y-8y^2-392\)
\(\Leftrightarrow9y^2-126y+441=0\)
\(\Leftrightarrow9\left(y^2-14y+49\right)=0\)
\(\Leftrightarrow\left(y-7\right)^2=0\)
\(\Leftrightarrow y-7=0\)
\(\Leftrightarrow y=7\left(Loại\right)\)
Vậy không có giá trị nào để biểu thức \(\frac{8-y}{y-7}+\frac{1}{7-y}\) có giá trị bằng 8.
a) \(\frac{y-1}{y-2}-\frac{y+3}{y-4}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
ĐKXĐ: \(y\ne2;y\ne4\)
\(\Leftrightarrow\frac{\left(y-1\right)\left(y-4\right)}{\left(y-2\right)\left(y-4\right)}-\frac{\left(y+3\right)\left(y-2\right)}{\left(y-2\right)\left(y-4\right)}=\frac{-2}{\left(y-2\right)\left(y-4\right)}\)
\(\Rightarrow y^2-5y+4-y^2-y+6=-2\)
\(\Leftrightarrow10-6y=-2\)
\(\Leftrightarrow-6y=-12\)
\(\Leftrightarrow y=2\left(Loại\right)\)
Vậy không có giá trị nào của y để biểu thức \(\frac{y-1}{y-2}-\frac{y+3}{y-4}\) và \(\frac{-2}{\left(y-2\right)\left(y-4\right)}\) có giá trị bằng nhau.
Bài 2:
\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì
\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)
Với \(f\left(-4\right)\) ta có:
\(f\left(-4\right)=-64+16a-4b-60=0\)
\(\Leftrightarrow16a-4b=124\)
(1)
Với \(f\left(-5\right)\) , ta có:
\(f\left(-5\right)=-125+25a-5b-60=0\)
\(\Leftrightarrow25a-5b=185\)(2)
Từ (1) và (2) , ta có:
\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)
Giải hệ ta được :
\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)
p/s: Lm xog chả bk mk lm cái zề nữa
T.Thùy Ninh
Theo bài toán:
\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)
\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)
Ta có:
\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)
\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)
\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)
\(=x^3-4x^2+x+6\)
p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha
CM cái sau:
Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)
Chứng minh:
\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
(áp dụng vào cái trên)
Dấu "=" xảy ra khi:
\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)
Vì a,b là các số nguyên tố lớn hơn 3
=> a,b chia 3 có dư là 1,2
=> a^2,b^2 chia 3 có dư là 1
=> a^2 - b^2 ⋮ 3 (1)
Vì a,b là các số nguyên tố lớn hơn
=> a,b chia 8 dư 1,3,5,7
=> a^2,b^2 chia 8 dư 1
=> a^2 - b^2 ⋮ 8 (2)
Từ (1) và (2), ta có a^2 - b^2 ⋮ 24 (đpcm)